BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36849906)

  • 1. A quantitative clinical evaluation of simultaneous reconstruction of attenuation and activity in time-of-flight PET.
    Zhang H; Wang J; Li N; Zhang Y; Cui J; Huo L; Zhang H
    BMC Med Imaging; 2023 Feb; 23(1):35. PubMed ID: 36849906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts.
    Presotto L; Busnardo E; Perani D; Gianolli L; Gilardi MC; Bettinardi V
    J Nucl Cardiol; 2016 Oct; 23(5):1086-1097. PubMed ID: 26275447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based attenuation correction for whole-body PET - a multi-tracer study with
    Toyonaga T; Shao D; Shi L; Zhang J; Revilla EM; Menard D; Ankrah J; Hirata K; Chen MK; Onofrey JA; Lu Y
    Eur J Nucl Med Mol Imaging; 2022 Jul; 49(9):3086-3097. PubMed ID: 35277742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
    Mehranian A; Arabi H; Zaidi H
    Neuroimage; 2016 Apr; 130():123-133. PubMed ID: 26853602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of time of flight and point spread function on quantitative parameters of lung lesions in
    Huang K; Feng Y; Liang W; Li L
    BMC Med Imaging; 2021 Nov; 21(1):169. PubMed ID: 34773998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application.
    Shi L; Zhang J; Toyonaga T; Shao D; Onofrey JA; Lu Y
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36584395
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes of [
    Liu Y; Gao MJ; Zhou J; Du F; Chen L; Huang ZK; Hu JB; Lou C
    BMC Med Imaging; 2021 Sep; 21(1):133. PubMed ID: 34530768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shine-through artifact due to high-radioactivity bladder and bowel gas in
    Tomita Y; Ichikawa Y; Sakuma H
    Ann Nucl Med; 2022 Aug; 36(8):736-745. PubMed ID: 35635608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The value of Bayesian penalized likelihood reconstruction for improving lesion conspicuity of malignant lung tumors on
    Kurita Y; Ichikawa Y; Nakanishi T; Tomita Y; Hasegawa D; Murashima S; Hirano T; Sakuma H
    Ann Nucl Med; 2020 Apr; 34(4):272-279. PubMed ID: 32060780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of maximum likelihood and conventional PET scatter scaling methods for
    Bal H; Kiser JW; Conti M; Bowen SL
    Med Phys; 2021 Aug; 48(8):4218-4228. PubMed ID: 34013586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Assessment of Emission- and Segmentation-Based MR-Guided Attenuation Correction in Whole-Body Time-of-Flight PET/MR Imaging.
    Mehranian A; Zaidi H
    J Nucl Med; 2015 Jun; 56(6):877-83. PubMed ID: 25858043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven respiratory phase-matched PET attenuation correction without CT.
    Hwang D; Kang SK; Kim KY; Choi H; Seo S; Lee JS
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33910170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies.
    Sah BR; Stolzmann P; Delso G; Wollenweber SD; Hüllner M; Hakami YA; Queiroz MA; Barbosa FG; von Schulthess GK; Pietsch C; Veit-Haibach P
    Nucl Med Commun; 2017 Jan; 38(1):57-66. PubMed ID: 27755394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical respiratory motion correction software (reconstruct, register and averaged-RRA), for
    Bouyeure-Petit AC; Chastan M; Edet-Sanson A; Becker S; Thureau S; Houivet E; Vera P; Hapdey S
    Br J Radiol; 2017 Feb; 90(1070):20160549. PubMed ID: 27936893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Reconstruction of Activity and Attenuation in Time-of-Flight PET: A Quantitative Analysis.
    Rezaei A; Deroose CM; Vahle T; Boada F; Nuyts J
    J Nucl Med; 2018 Oct; 59(10):1630-1635. PubMed ID: 29496982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiquantitative Assessment of
    Minamimoto R; Xu G; Jamali M; Holley D; Barkhodari A; Zaharchuk G; Iagaru A
    AJR Am J Roentgenol; 2017 Nov; 209(5):1136-1142. PubMed ID: 28777652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation and Optimization of a New PET Reconstruction Algorithm, Bayesian Penalized Likelihood Reconstruction, for Lung Cancer Assessment According to Lesion Size.
    Otani T; Hosono M; Kanagaki M; Onishi Y; Matsubara N; Kawabata K; Kimura H
    AJR Am J Roentgenol; 2019 Aug; 213(2):W50-W56. PubMed ID: 30995096
    [No Abstract]   [Full Text] [Related]  

  • 19. The association of tumor-to-background ratios and SUVmax deviations related to point spread function and time-of-flight F18-FDG-PET/CT reconstruction in colorectal liver metastases.
    Rogasch JM; Steffen IG; Hofheinz F; Großer OS; Furth C; Mohnike K; Hass P; Walke M; Apostolova I; Amthauer H
    EJNMMI Res; 2015; 5():31. PubMed ID: 25992306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a deep learning enhancement method applied to PET images acquired with a reduced acquisition time.
    Ciborowski K; Gramek-Jedwabna A; Gołąb M; Miechowicz I; Szczurek J; Ruchała M; Czepczyński R
    Nucl Med Rev Cent East Eur; 2023; 26(0):116-122. PubMed ID: 37786943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.