These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 36850179)
1. High-Strength Bio-Degradable Polymer Foams with Stable High Volume-Expansion Ratio Using Chain Extension and Green Supercritical Mixed-Gas Foaming. Long H; Xu H; Shaoyu J; Jiang T; Zhuang W; Li M; Jin J; Ji L; Ying H; Zhu C Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850179 [TBL] [Abstract][Full Text] [Related]
2. Polybutylene adipate terephthalate/polylactic acid interface enhanced compatibilization and its bead-foaming characteristics. Wu Y; Wang C; Xie M; Hu S Int J Biol Macromol; 2024 Nov; 279(Pt 2):135221. PubMed ID: 39218185 [TBL] [Abstract][Full Text] [Related]
3. Thermoplastic Starch with Poly(butylene adipate- Chang CJ; Venkatesan M; Cho CJ; Chung PY; Chandrasekar J; Lee CH; Wang HT; Wong CM; Kuo CC Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631835 [TBL] [Abstract][Full Text] [Related]
4. Reinforcing a Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Composite Foam with Polyethylene Glycol under Supercritical Carbon Dioxide. Chang CJ; Chandrasekar J; Cho CJ; Venkatesan M; Huang PS; Yang CW; Wang HT; Wong CM; Kuo CC Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616479 [TBL] [Abstract][Full Text] [Related]
5. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends. Zhao X; Yu J; Wang X; Huang Z; Zhou W; Peng S Int J Biol Macromol; 2023 Oct; 250():126204. PubMed ID: 37573914 [TBL] [Abstract][Full Text] [Related]
6. Effect of Operational Variables on Supercritical Foaming of Caffeic Acid-Loaded Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends for the Development of Sustainable Materials. Rivera P; Torres A; Romero J; Alarcón Á; Martínez S; Arrieta MP; Rodríguez-Mercado F; Galotto MJ Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611209 [TBL] [Abstract][Full Text] [Related]
7. Fractionated lignin as a green compatibilizer to improve the compatibility of poly (butylene adipate-co-terephthalate) /polylactic acid composites. Liu Q; Zhou SJ; Xiong SJ; Yu S; Yuan TQ Int J Biol Macromol; 2024 Apr; 265(Pt 1):130834. PubMed ID: 38484815 [TBL] [Abstract][Full Text] [Related]
8. Super toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure. Wu M; Ren Q; Zhu X; Li W; Luo H; Wu F; Wang L; Zheng W; Cui P; Yi X Int J Biol Macromol; 2023 Aug; 245():125490. PubMed ID: 37348589 [TBL] [Abstract][Full Text] [Related]
9. Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate- Shi X; Qin J; Wang L; Ren L; Rong F; Li D; Wang R; Zhang G RSC Adv; 2018 Mar; 8(22):11850-11861. PubMed ID: 35539374 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Soft Biodegradable Foam with Improved Shrinkage Resistance and Thermal Stability. Tian F; Huang H; Li Y; Zhai W Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124376 [TBL] [Abstract][Full Text] [Related]
11. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites. Fang YG; Lin JY; Zhang YC; Qiu QW; Zeng Y; Li WX; Wang ZY Int J Biol Macromol; 2024 Mar; 262(Pt 1):129998. PubMed ID: 38336326 [TBL] [Abstract][Full Text] [Related]
12. Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Pilla S; Kim SG; Auer GK; Gong S; Park CB Mater Sci Eng C Mater Biol Appl; 2010 Jan; 30(2):255-262. PubMed ID: 30011615 [TBL] [Abstract][Full Text] [Related]
14. Effect of Different Compatibilizers on the Properties of Poly (Lactic Acid)/Poly (Butylene Adipate-Co-Terephthalate) Blends Prepared under Intense Shear Flow Field. He H; Wang G; Chen M; Xiong C; Li Y; Tong Y Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369995 [TBL] [Abstract][Full Text] [Related]
16. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Wei D; Wang H; Xiao H; Zheng A; Yang Y Carbohydr Polym; 2015 Jun; 123():275-82. PubMed ID: 25843859 [TBL] [Abstract][Full Text] [Related]
17. Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance. Wang S; Yang W; Li X; Hu Z; Wang B; Li M; Dong W Int J Biol Macromol; 2021 Dec; 193(Pt B):1059-1067. PubMed ID: 34798185 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and Characterization of PLA/PBAT Blends, Blend-Based Nanocomposites, and Their Supercritical Carbon Dioxide-Induced Foams. Behera K; Tsai CH; Liao XB; Chiu FC Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065288 [TBL] [Abstract][Full Text] [Related]
19. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Wang J; Chai J; Wang G; Zhao J; Zhang D; Li B; Zhao H; Zhao G Int J Biol Macromol; 2019 Oct; 138():144-155. PubMed ID: 31306706 [TBL] [Abstract][Full Text] [Related]
20. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation. Li D; Zhang S; Zhao Z; Miao Z; Zhang G; Shi X Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]