BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36850417)

  • 1. Single Seed Near-Infrared Hyperspectral Imaging for Classification of Perennial Ryegrass Seed.
    Reddy P; Panozzo J; Guthridge KM; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview.
    Reddy P; Guthridge KM; Panozzo J; Ludlow EJ; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared spectroscopy allows detection and species identification of Epichloë endophytes in Lolium perenne.
    Soto-Barajas MC; Zabalgogeazcoa I; González-Martin I; Vázquez-de-Aldana BR
    J Sci Food Agric; 2018 Oct; 98(13):5037-5044. PubMed ID: 29603231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.
    Zhang T; Wei W; Zhao B; Wang R; Li M; Yang L; Wang J; Sun Q
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29517991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Measurement of Soybean Seed Viability Using Kernel-Based Multispectral Image Analysis.
    Baek I; Kusumaningrum D; Kandpal LM; Lohumi S; Mo C; Kim MS; Cho BK
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-acute feeding study of a tall fescue endophyte in a perennial ryegrass host using mice.
    Finch SC; Webb NG; Munday JS; Sprosen JM; Cave VM
    Toxicon; 2022 Jul; 214():30-36. PubMed ID: 35523309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging.
    Zhang T; Fan S; Xiang Y; Zhang S; Wang J; Sun Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118488. PubMed ID: 32470809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemometric strategies for near infrared hyperspectral imaging analysis: classification of cotton seed genotypes.
    Rocha PD; Medeiros EP; Silva CS; da Silva Simões S
    Anal Methods; 2021 Nov; 13(42):5065-5074. PubMed ID: 34651617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis.
    Pang L; Wang J; Men S; Yan L; Xiao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118888. PubMed ID: 32947159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturity Stage Discrimination of
    Jiang H; Hu Y; Jiang X; Zhou H
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Guiboutia species by NIR-HSI spectroscopy.
    Xue X; Chen Z; Wu H; Gao H
    Sci Rep; 2022 Jul; 12(1):11507. PubMed ID: 35798833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Assessment of the
    Tannenbaum I; Rodoni B; Spangenberg G; Mann R; Sawbridge T
    Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34199453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative and quantitative analysis of endophyte alkaloids in perennial ryegrass using near-infrared spectroscopy.
    Soto-Barajas MC; Zabalgogeazcoa I; González-Martin I; Vázquez-de-Aldana BR
    J Sci Food Agric; 2017 Nov; 97(14):5028-5036. PubMed ID: 28417464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms.
    Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G
    J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrum classification of citrus tissues infected by fungi and multispectral image identification of early rotten oranges.
    Luo W; Fan G; Tian P; Dong W; Zhang H; Zhan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121412. PubMed ID: 35660147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion.
    Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W
    Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.
    Lee H; Kim MS; Song YR; Oh CS; Lim HS; Lee WH; Kang JS; Cho BK
    J Sci Food Agric; 2017 Mar; 97(4):1084-1092. PubMed ID: 27264863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.