BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 36850428)

  • 1. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting.
    Wu L; Zhu P; Xie M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Four Electrical Interfacing Circuits in Frequency Up-Conversion Piezoelectric Energy Harvesting.
    Lu H; Chen K; Tang H; Liu W
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Powered DSSH Circuit with MOSFET Threshold Voltage Management for Piezoelectric Energy Harvesting.
    Wu L; Wang X; Xie M
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion.
    Nastro A; Pienazza N; Baù M; Aceti P; Rouvala M; Ardito R; Ferrari M; Corigliano A; Ferrari V
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions.
    Tang G; Wang Z; Hu X; Wu S; Xu B; Li Z; Yan X; Xu F; Yuan D; Li P; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shoe-embedded piezoelectric energy harvester for wearable sensors.
    Zhao J; You Z
    Sensors (Basel); 2014 Jul; 14(7):12497-510. PubMed ID: 25019634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit.
    Hu H; Xue H; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1177-87. PubMed ID: 17571816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric diaphragm for vibration energy harvesting.
    Minazara E; Vasic D; Costa F; Poulin G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring.
    Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband vibration energy harvesting for wireless sensor node power supply in train container.
    Wang L; Luo G; Jiang Z; Zhang F; Zhao L; Yang P; Lin Q; Maeda R
    Rev Sci Instrum; 2019 Dec; 90(12):125003. PubMed ID: 31893793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.