These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36850482)

  • 1. A Mitigation Method for Optical-Turbulence-Induced Errors and Optimal Target Design in Vision-Based Displacement Measurement.
    Huang X; Dai W; Zhang Y; Xing L; Ye Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Target Structural Displacement Measurement Using Reference Frame-Based Deepflow.
    Won J; Park JW; Park K; Yoon H; Moon DS
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-based synchronous optical instrument for measuring atmospheric visibility and turbulence intensity: theories, design and experiments.
    Han Y; Gao P; Huang J; Zhang T; Zhuang J; Hu M; Wu Y
    Opt Express; 2018 Mar; 26(6):6833-6850. PubMed ID: 29609371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Vision Method for Robust Monitoring of Multi-Point Dynamic Displacements with Smartphones in an Interference Environment.
    Chen T; Zhou Z
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33092260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Optimization and Improvement of FBG Flexible Sensor for Slope Displacement Profiles Measurement.
    Tian C; Wang Z; Sui Q; Wang J; Dong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise reduction of air turbulence via thequasi-common-path method.
    He Y; Zhao S; Wei H; Li Y
    Appl Opt; 2017 Aug; 56(23):6668-6672. PubMed ID: 29047960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.
    Yang C; Xu C; Ni W; Gan Y; Hou J; Chen S
    Opt Express; 2017 Oct; 25(21):25612-25624. PubMed ID: 29041226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-Vision-Based Vibration Tracking Using a Digital Camera: A Sparse-Optical-Flow-Based Target Tracking Method.
    Nie GY; Bodda SS; Sandhu HK; Han K; Gupta A
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors.
    García-Zambrana A; Castillo-Vázquez B; Castillo-Vázquez C
    Opt Express; 2012 Jan; 20(3):2096-109. PubMed ID: 22330450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Vision-Based Sensor for Noncontact Structural Displacement Measurement.
    Feng D; Feng MQ; Ozer E; Fukuda Y
    Sensors (Basel); 2015 Jul; 15(7):16557-75. PubMed ID: 26184197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Three-Dimensional Structural Displacement Using a Hybrid Inertial Vision-Based System.
    Zhang X; Zeinali Y; Story BA; Rajan D
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Out-of-plane displacement measurement for an optical fiber image transmission element using optical flow.
    Zhao R; Jiao P; Liu B; Sun P; Tang Y; Jia J
    Appl Opt; 2021 Nov; 60(32):10282-10291. PubMed ID: 34807138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High precision angular displacement measurement based on self-correcting error compensation of three image sensors.
    Yu H; Wan Q; Lu X; Zhao C; Liang L
    Appl Opt; 2022 Jan; 61(1):287-293. PubMed ID: 35200830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible dynamic measurement method of three-dimensional surface profilometry based on multiple vision sensors.
    Liu Z; Li X; Li F; Zhang G
    Opt Express; 2015 Jan; 23(1):384-400. PubMed ID: 25835684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding.
    Zhao J; Zhou Y; Braverman B; Liu C; Pang K; Steinhoff NK; Tyler GA; Willner AE; Boyd RW
    Opt Express; 2020 May; 28(10):15376-15391. PubMed ID: 32403566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-dynamic angle measurement based on laser displacement sensors.
    Sun J; Zhang J; Liu Z; Zhang G
    Appl Opt; 2013 Aug; 52(23):5676-85. PubMed ID: 23938418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental Factors Using Spatio-Temporal Context Learning and Taylor Approximation.
    Dong CZ; Celik O; Catbas FN; OBrien E; Taylor S
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.
    Bae Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust five-degree-of-freedom measurement system with self-compensation and air turbulence protection.
    Liu W; Yu Z; Duan F; Hu H; Fu X; Bao R
    Opt Express; 2023 Jan; 31(3):4652-4666. PubMed ID: 36785427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Image Grating Sensor for Linear Displacement Measurement and Its Error Analysis.
    Cheng F; Zhou D; Yu Q; Tjahjowidodo T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.