These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36850627)

  • 1. Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning.
    Bertocco M; Parrino S; Peruzzi G; Pozzebon A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation.
    Balivada S; Grant G; Zhang X; Ghosh M; Guha S; Matamala R
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors.
    Placidi P; Morbidelli R; Fortunati D; Papini N; Gobbi F; Scorzoni A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Sensing Antenna for Soil Moisture: Beacon Approach.
    Škiljo M; Blažević Z; Dujić-Rodić L; Perković T; Šolić P
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes.
    Froiz-Míguez I; Lopez-Iturri P; Fraga-Lamas P; Celaya-Echarri M; Blanco-Novoa Ó; Azpilicueta L; Falcone F; Fernández-Caramés TM
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a LoRaWAN IoT Node with Ion-Selective Electrode Soil Nitrate Sensors for Precision Agriculture.
    Bristow N; Rengaraj S; Chadwick DR; Kettle J; Jones DL
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture.
    Lloret J; Sendra S; Garcia L; Jimenez JM
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of calibrating a low-cost capacitance-based soil moisture sensor on AquaCrop model performance.
    Adla S; Bruckmaier F; Arias-Rodriguez LF; Tripathi S; Pande S; Disse M
    J Environ Manage; 2024 Feb; 353():120248. PubMed ID: 38325280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors.
    Adla S; Rai NK; Sri Karumanchi H; Tripathi S; Disse M; Pande S
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar Sensor.
    Uthayakumar A; Mohan MP; Khoo EH; Jimeno J; Siyal MY; Karim MF
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstrating the Potential of a Low-Cost Soil Moisture Sensor Network.
    Briciu-Burghina C; Zhou J; Ali MI; Regan F
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Low-Cost Capacitive-Based Soil Moisture Sensor and Smart Monitoring Unit Operated by Solar Cells for Greenhouse Irrigation Management.
    Okasha AM; Ibrahim HG; Elmetwalli AH; Khedher KM; Yaseen ZM; Elsayed S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation of the Accuracy of EC5 and 5TE Capacitance Sensors for Soil Moisture Monitoring in Urban Soils-Laboratory and Field Calibration.
    Kanso T; Gromaire MC; Ramier D; Dubois P; Chebbo G
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN.
    Bouguera T; Diouris JF; Chaillout JJ; Jaouadi R; Andrieux G
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests.
    Pozzebon A; Cappelli I; Campagnaro F; Francescon R; Zorzi M
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling LoRa's Oceanic Reach: Assessing the Coverage of the Azores LoRaWAN Network from an Island.
    Pinelo J; Rocha AD; Arvana M; Gonçalves J; Cota N; Silva P
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.
    Leone M; Principe S; Consales M; Parente R; Laudati A; Caliro S; Cutolo A; Cusano A
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN.
    Singh RK; Rahmani MH; Weyn M; Berkvens R
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refined Node Energy Consumption Modeling in a LoRaWAN Network.
    Maudet S; Andrieux G; Chevillon R; Diouris JF
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Study on the Internet of Underwater Things: Applications, Challenges, and Channel Models.
    Kao CC; Lin YS; Wu GD; Huang CJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.