These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36850792)

  • 1. A Reinforcement Learning Handover Parameter Adaptation Method Based on LSTM-Aided Digital Twin for UDN.
    He J; Xiang T; Wang Y; Ruan H; Zhang X
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks.
    Chen G; Zhang X; Shen F; Zeng Q
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning.
    Ohnishi S; Uchibe E; Yamaguchi Y; Nakanishi K; Yasui Y; Ishii S
    Front Neurorobot; 2019; 13():103. PubMed ID: 31920613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MonkeyKing: Adaptive Parameter Tuning on Big Data Platforms with Deep Reinforcement Learning.
    Du H; Han P; Xiang Q; Huang S
    Big Data; 2020 Aug; 8(4):270-290. PubMed ID: 32654536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximate Policy-Based Accelerated Deep Reinforcement Learning.
    Wang X; Gu Y; Cheng Y; Liu A; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minibatch Recursive Least Squares Q-Learning.
    Zhang C; Song Q; Meng Z
    Comput Intell Neurosci; 2021; 2021():5370281. PubMed ID: 34659393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slicing Resource Allocation Based on Dueling DQN for eMBB and URLLC Hybrid Services in Heterogeneous Integrated Networks.
    Chen G; Shao R; Shen F; Zeng Q
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Financial Stock Investment Management Using Deep Learning Algorithm in the Internet of Things.
    Fan J; Peng S
    Comput Intell Neurosci; 2022; 2022():4514300. PubMed ID: 35880062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FSPBO-DQN: SeGAN based segmentation and Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in IoT applications.
    Kumar KS; Suganthi N; Muppidi S; Kumar BS
    Artif Intell Med; 2022 Jul; 129():102299. PubMed ID: 35659386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control.
    Chang CL; Chen ST; Lin PY; Chang CY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects.
    Sresakoolchai J; Kaewunruen S
    Sci Rep; 2023 Feb; 13(1):2439. PubMed ID: 36765166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of deep neural network and deep reinforcement learning in wireless communication.
    Li M; Li H
    PLoS One; 2020; 15(7):e0235447. PubMed ID: 32614858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory.
    Liu J; Lin CR; Hu YC; Donta PK
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Handover Decision Algorithm in Heterogeneous Wireless Network.
    Abdullah RM; Zukarnain ZA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28708067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of trapezoidal-shaped overlapping nuclear pulse parameters based on a deep learning CNN-LSTM model.
    Ma XK; Huang HQ; Ji X; Dai HY; Wu JH; Zhao J; Yang F; Tang L; Jiang KM; Ding WC; Zhou W
    J Synchrotron Radiat; 2021 May; 28(Pt 3):910-918. PubMed ID: 33949998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.