These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36850953)

  • 21. Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator.
    Zheng X; Liu Y; Zhen J; Qiu J; Liu G
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates.
    Chiou MJ; Lin YC; Ono T; Esashi M; Yeh SL; Wu TT
    Ultrasonics; 2014 Sep; 54(7):1984-90. PubMed ID: 24909597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical Investigation of Phononic Crystal Based Film Bulk Acoustic Wave Resonators.
    Shi L; Xuan W; Zhang B; Dong S; Jin H; Luo J
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double defects-induced elastic wave coupling and energy localization in a phononic crystal.
    Jo SH; Shin YC; Choi W; Yoon H; Youn BD; Kim M
    Nano Converg; 2021 Sep; 8(1):27. PubMed ID: 34529160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure.
    Zhang S; Qian D; Zhang Z; Ge H
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Ternary Seismic Metamaterial for Low Frequency Vibration Attenuation.
    Chen C; Lei J; Liu Z
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Figure of Merit Enhancement of Laterally Vibrating RF-MEMS Resonators via Energy-Preserving Addendum Frame.
    Workie TB; Wu Z; Tang P; Bao J; Hashimoto KY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crossed ring anchored disk resonator for self-alignment of the anchor.
    Baghelani M; Ghavifekr HB; Ebrahimi A
    J Adv Res; 2014 Jan; 5(1):109-15. PubMed ID: 25685477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure.
    Xiang H; Chai Z; Kou W; Zhong H; Xiang J
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.
    Zuo S; Huang H; Wu X; Zhang M; Ni T
    J Acoust Soc Am; 2018 Mar; 143(3):1326. PubMed ID: 29604708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Band gap in tubular pillar phononic crystal plate.
    Shu F; Liu Y; Wu J; Wu Y
    Ultrasonics; 2016 Sep; 71():172-176. PubMed ID: 27376841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Periodic Tubular Structures and Phononic Crystals towards High-Q Liquid Ultrasonic Inline Sensors for Pipes.
    Mukhin N; Lucklum R
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.
    Zhou C; Sai Y; Chen J
    Ultrasonics; 2016 Sep; 71():69-74. PubMed ID: 27281285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
    Gao F; Bermak A; Benchabane S; Robert L; Khelif A
    Microsyst Nanoeng; 2021; 7():8. PubMed ID: 33489307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).
    Cheng Y; Liu XJ; Wu DJ
    J Acoust Soc Am; 2011 Mar; 129(3):1157-60. PubMed ID: 21428478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research on bandgaps in two-dimensional phononic crystal with two resonators.
    Gao N; Wu JH; Yu L
    Ultrasonics; 2015 Feb; 56():287-93. PubMed ID: 25216625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AlN MEMS filters with extremely high bandwidth widening capability.
    Gao A; Liu K; Liang J; Wu T
    Microsyst Nanoeng; 2020; 6():74. PubMed ID: 34567684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hybrid phononic crystal for roof application.
    Wan Q; Shao R
    J Acoust Soc Am; 2017 Nov; 142(5):2988. PubMed ID: 29195453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.