These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 36851563)
21. Coliphages of the human urinary microbiota. Crum E; Merchant Z; Ene A; Miller-Ensminger T; Johnson G; Wolfe AJ; Putonti C PLoS One; 2023; 18(4):e0283930. PubMed ID: 37053131 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of spontaneous induction of lambdoid prophages in Escherichia coli cultures: simple procedures with possible biotechnological applications. Czyz A; Los M; Wrobel B; Wegrzyn G BMC Biotechnol; 2001; 1():1. PubMed ID: 11316465 [TBL] [Abstract][Full Text] [Related]
23. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015 [TBL] [Abstract][Full Text] [Related]
24. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Nawel Z; Rima O; Amira B Microb Pathog; 2022 Apr; 165():105490. PubMed ID: 35307601 [TBL] [Abstract][Full Text] [Related]
26. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Tuttle MJ; Buchan A Environ Microbiol; 2020 Dec; 22(12):4919-4933. PubMed ID: 32935433 [TBL] [Abstract][Full Text] [Related]
27. Microbial density-dependent viral dynamics and low activity of temperate phages in the activated sludge process. Liu R; Li Z; Han G; Cun S; Hou D; Yu Z; Xue K; Liu X Water Res; 2023 Apr; 232():119709. PubMed ID: 36764107 [TBL] [Abstract][Full Text] [Related]
28. Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features. Putzeys L; Poppeliers J; Boon M; Lood C; Vallino M; Lavigne R mSystems; 2023 Apr; 8(2):e0118922. PubMed ID: 36794936 [No Abstract] [Full Text] [Related]
29. Bacterial genome remodeling through bacteriophage recombination. Menouni R; Hutinet G; Petit MA; Ansaldi M FEMS Microbiol Lett; 2015 Jan; 362(1):1-10. PubMed ID: 25790500 [TBL] [Abstract][Full Text] [Related]
30. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Zhang M; Zhang T; Yu M; Chen YL; Jin M Viruses; 2022 Aug; 14(9):. PubMed ID: 36146712 [TBL] [Abstract][Full Text] [Related]
31. Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity. Pleška M; Lang M; Refardt D; Levin BR; Guet CC Nat Ecol Evol; 2018 Feb; 2(2):359-366. PubMed ID: 29311700 [TBL] [Abstract][Full Text] [Related]
32. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. Schroven K; Aertsen A; Lavigne R FEMS Microbiol Rev; 2021 Jan; 45(1):. PubMed ID: 32897318 [TBL] [Abstract][Full Text] [Related]
33. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages. Sudhakari PA; Ramisetty BCM Microb Ecol; 2023 Nov; 86(4):3068-3081. PubMed ID: 37843655 [TBL] [Abstract][Full Text] [Related]
34. Characterization of Temperate LPS-Binding Bordetella avium Phages That Lack Superinfection Immunity. Serian D; Churin Y; Hammerl JA; Rohde M; Jung A; Müller A; Yue M; Kehrenberg C Microbiol Spectr; 2023 Jun; 11(3):e0370222. PubMed ID: 37125905 [TBL] [Abstract][Full Text] [Related]
35. Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens. Al-Anany AM; Fatima R; Hynes AP Cell Rep; 2021 May; 35(8):109172. PubMed ID: 34038739 [TBL] [Abstract][Full Text] [Related]
36. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. Wendling CC; Piecyk A; Refardt D; Chibani C; Hertel R; Liesegang H; Bunk B; Overmann J; Roth O BMC Evol Biol; 2017 Apr; 17(1):98. PubMed ID: 28399796 [TBL] [Abstract][Full Text] [Related]
37. The book of Lambda does not tell us that naturally occurring lysogens of Berryhill BA; Garcia R; McCall IC; Manuel JA; Chaudhry W; Petit MA; Levin BR Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2212121120. PubMed ID: 36881631 [TBL] [Abstract][Full Text] [Related]
39. Use of real-time quantitative PCR for the analysis of phiLC3 prophage stability in lactococci. Lunde M; Blatny JM; Lillehaug D; Aastveit AH; Nes IF Appl Environ Microbiol; 2003 Jan; 69(1):41-8. PubMed ID: 12513975 [TBL] [Abstract][Full Text] [Related]
40. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]