These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36851913)

  • 21. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-scale feature extraction fusion model for human activity recognition.
    Zhang C; Cao K; Lu L; Deng T
    Sci Rep; 2022 Nov; 12(1):20620. PubMed ID: 36450822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Margin-Based Deep Learning Networks for Human Activity Recognition.
    Lv T; Wang X; Jin L; Xiao Y; Song M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attention-enhanced gated recurrent unit for action recognition in tennis.
    Gao M; Ju B
    PeerJ Comput Sci; 2024; 10():e1804. PubMed ID: 38259901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-Attention Enhanced Pyramid Multi-Scale Networks for Sensor-Based Human Activity Recognition.
    Pang H; Zheng L; Fang H
    IEEE J Biomed Health Inform; 2024 May; 28(5):2733-2744. PubMed ID: 38483804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confidence-Calibrated Human Activity Recognition.
    Roy D; Girdzijauskas S; Socolovschi S
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. STC-NLSTMNet: An Improved Human Activity Recognition Method Using Convolutional Neural Network with NLSTM from WiFi CSI.
    Islam MS; Jannat MKA; Hossain MN; Kim WS; Lee SW; Yang SH
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Wearable-Based Activity Recognition Using Image Representations.
    Sanchez Guinea A; Sarabchian M; Mühlhäuser M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAG-Res2Net: a novel deep learning network for human activity recognition.
    Liu H; Zhao B; Dai C; Sun B; Li A; Wang Z
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37939391
    [No Abstract]   [Full Text] [Related]  

  • 32. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Convolutional Neural Network with Symbiotic Organism Search-Based Human Activity Recognition for Cognitive Health Assessment.
    Alonazi M; Alshahrani HM; Kouki F; Almalki NS; Mahmud A; Majdoubi J
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments.
    Irvine N; Nugent C; Zhang S; Wang H; Ng WWY
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network.
    Wei X; Wang Z
    Sci Rep; 2024 Mar; 14(1):7414. PubMed ID: 38548859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.
    Cho H; Yoon SM
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Explaining and Visualizing Embeddings of One-Dimensional Convolutional Models in Human Activity Recognition Tasks.
    Aquino G; Costa MGF; Filho CFFC
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.