These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36851913)

  • 41. More Reliable Neighborhood Contrastive Learning for Novel Class Discovery in Sensor-Based Human Activity Recognition.
    Zhang M; Zhu T; Nie M; Liu Z
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SemNet: Learning semantic attributes for human activity recognition with deep belief networks.
    Venkatachalam S; Nair H; Zeng M; Tan CS; Mengshoel OJ; Shen JP
    Front Big Data; 2022; 5():879389. PubMed ID: 36111178
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition.
    Mekruksavanich S; Jitpattanakul A
    Sci Rep; 2023 Jul; 13(1):12067. PubMed ID: 37495634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stacked deep analytic model for human activity recognition on a UCI HAR database.
    Pang YH; Ping LY; Ling GF; Yin OS; How KW
    F1000Res; 2021; 10():1046. PubMed ID: 35360410
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition.
    Chen K; Yao L; Zhang D; Wang X; Chang X; Nie F
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1747-1756. PubMed ID: 31329134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep Learning in the Recognition of Activities of Daily Living Using Smartwatch Data.
    Cavalcante AF; Kunst VHL; Chaves TM; de Souza JDT; Ribeiro IM; Quintino JP; da Silva FQB; Santos ALM; Teichrieb V; da Gama AEF
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks.
    Zuo Z; Shuai B; Wang G; Liu X; Wang X; Wang B; Chen Y
    IEEE Trans Image Process; 2016 Jul; 25(7):2983-2996. PubMed ID: 28113173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.
    Scheurer S; Tedesco S; Brown KN; O'Flynn B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098362
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Deep Regression Approach for Human Activity Recognition Under Partial Occlusion.
    Vernikos I; Spyrou E; Kostis IA; Mathe E; Mylonas P
    Int J Neural Syst; 2023 Sep; 33(9):2350047. PubMed ID: 37602705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition.
    Azadi B; Haslgrübler M; Anzengruber-Tanase B; Sopidis G; Ferscha A
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of deep neural network-based human activity recognition for a wearable device.
    Suwannarat K; Kurdthongmee W
    Heliyon; 2021 Aug; 7(8):e07797. PubMed ID: 34485724
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimizing Sensor Deployment for Multi-Sensor-Based HAR System with Improved Glowworm Swarm Optimization Algorithm.
    Tian Y; Zhang J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living.
    Mohamed SA; Martinez-Hernandez U
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors.
    Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MSTCN: A multiscale temporal convolutional network for user independent human activity recognition.
    Raja Sekaran S; Pang YH; Ling GF; Yin OS
    F1000Res; 2021; 10():1261. PubMed ID: 36896393
    [No Abstract]   [Full Text] [Related]  

  • 59. AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design.
    Ismail WN; Alsalamah HA; Hassan MM; Mohamed E
    Heliyon; 2023 Feb; 9(2):e13636. PubMed ID: 36852018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wireless body area sensor networks based human activity recognition using deep learning.
    El-Adawi E; Essa E; Handosa M; Elmougy S
    Sci Rep; 2024 Feb; 14(1):2702. PubMed ID: 38302545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.