BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36852047)

  • 1. Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better?
    Zhou N; Shi X; Dixit O; Firszt JB; Holden TA
    Heliyon; 2023 Feb; 9(2):e12467. PubMed ID: 36852047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of site-specific level adjustments on speech recognition with cochlear implants.
    Zhou N; Pfingst BE
    Ear Hear; 2014; 35(1):30-40. PubMed ID: 24225651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.
    Zhou N; Cadmus M; Dong L; Mathews J
    J Assoc Res Otolaryngol; 2018 Jun; 19(3):317-330. PubMed ID: 29696448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychophysical Tuning Curves as a Correlate of Electrode Position in Cochlear Implant Listeners.
    DeVries L; Arenberg JG
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):571-587. PubMed ID: 29869047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants.
    Collins A; Foghsgaard S; Druce E; Margani V; Mejia O; O'Leary S
    Otol Neurotol; 2024 Mar; 45(3):238-244. PubMed ID: 38238914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding.
    Long CJ; Holden TA; McClelland GH; Parkinson WS; Shelton C; Kelsall DC; Smith ZM
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):293-304. PubMed ID: 24477546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants.
    Schvartz-Leyzac KC; Holden TA; Zwolan TA; Arts HA; Firszt JB; Buswinka CJ; Pfingst BE
    J Assoc Res Otolaryngol; 2020 Jun; 21(3):259-275. PubMed ID: 32342256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral Neural Synchrony in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Skidmore J; Bruce IC; Oleson JJ; Yuan Y
    Ear Hear; 2024 Mar; ():. PubMed ID: 38503720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the Number of Channels and Channel Stimulation Rate on Speech Recognition and Sound Quality Using Precurved Electrode Arrays.
    Berg KA; Chen C; Noble JH; Dawant BM; Dwyer RT; Labadie RF; Gifford RH
    Am J Audiol; 2023 Jun; 32(2):403-416. PubMed ID: 37249492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Perimodiolar Electrodes: Imaging and Electrophysiological Outcomes.
    Mewes A; Brademann G; Hey M
    Otol Neurotol; 2020 Aug; 41(7):e934-e944. PubMed ID: 32658111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship Between Electrode-to-Modiolus Distance and Current Levels for Adults With Cochlear Implants.
    Davis TJ; Zhang D; Gifford RH; Dawant BM; Labadie RF; Noble JH
    Otol Neurotol; 2016 Jan; 37(1):31-7. PubMed ID: 26649603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Relationship Between Pitch Perception and Neural Health in Cochlear Implant Users.
    Arslan NO; Luo X
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):875-887. PubMed ID: 36329369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation.
    Shepherd RK; Hatsushika S; Clark GM
    Hear Res; 1993 Mar; 66(1):108-20. PubMed ID: 8473242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarity Sensitivity as a Potential Correlate of Neural Degeneration in Cochlear Implant Users.
    Mesnildrey Q; Venail F; Carlyon RP; Macherey O
    J Assoc Res Otolaryngol; 2020 Feb; 21(1):89-104. PubMed ID: 32020417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association Between Intracochlear Electrode Design and Electrically-Evoked Compound Action Potential Measures in Cochlear Implant Users.
    Kim JS; Hong SH; Moon IJ
    Otolaryngol Head Neck Surg; 2024 May; ():. PubMed ID: 38774957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude Modulation Detection and Speech Recognition in Late-Implanted Prelingually and Postlingually Deafened Cochlear Implant Users.
    De Ruiter AM; Debruyne JA; Chenault MN; Francart T; Brokx JP
    Ear Hear; 2015; 36(5):557-66. PubMed ID: 25851075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Spectral Resolution and Frequency Mismatch on Speech Understanding and Spatial Release From Masking in Simulated Bilateral Cochlear Implants.
    Xu K; Willis S; Gopen Q; Fu QJ
    Ear Hear; 2020; 41(5):1362-1371. PubMed ID: 32132377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The distance from the modiolus of perimodiolar electrode arrays of cochlear implants.
    Perényi Á; Nagy R; Dimák B; Csanády M; Jóri J; Kiss JG; Rovó L
    Orv Hetil; 2019 Aug; 160(31):1216-1222. PubMed ID: 31352808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships Between the Auditory Nerve's Ability to Recover From Neural Adaptation, Cortical Encoding of and Perceptual Sensitivity to Within-channel Temporal Gaps in Postlingually Deafened Adult Cochlear Implant Users.
    He S; Yuan Y; Skidmore J
    Ear Hear; 2023 Sep-Oct 01; 44(5):1202-1211. PubMed ID: 37018083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.