BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36852419)

  • 1. Combining
    Kalami A; Shahgolzari M; Khosroushahi AY; Fiering S
    Immunotherapy; 2023 Apr; 15(5):367-381. PubMed ID: 36852419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ vaccination: Harvesting low hanging fruit on the cancer immunotherapy tree.
    Sheen MR; Fiering S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1524. PubMed ID: 29667346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade.
    Mao C; Beiss V; Ho GW; Fields J; Steinmetz NF; Fiering S
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36460333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomedicines for an Enhanced Immunogenic Cell Death-Based
    Zhao C; Wang C; Shan W; Wang Z; Chen X; Deng H
    Acc Chem Res; 2024 Mar; 57(6):905-918. PubMed ID: 38417027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using nanoparticles for
    Gorbet MJ; Singh A; Mao C; Fiering S; Ranjan A
    Int J Hyperthermia; 2020 Dec; 37(3):18-33. PubMed ID: 33426995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiotherapy-Triggered In Situ Tumor Vaccination Boosts Checkpoint Blockaded Immune Response via Antigen-Capturing Nanoadjuvants.
    Xu P; Ma J; Zhou Y; Gu Y; Cheng X; Wang Y; Wang Y; Gao M
    ACS Nano; 2024 Jan; 18(1):1022-1040. PubMed ID: 38131289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis.
    Kim S; Kim SA; Nam GH; Hong Y; Kim GB; Choi Y; Lee S; Cho Y; Kwon M; Jeong C; Kim S; Kim IS
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33479026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers.
    Shi F; Huang X; Hong Z; Lu N; Huang X; Liu L; Liang T; Bai X
    Cancer Lett; 2023 May; 562():216167. PubMed ID: 37031916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor vaccination: where we stand.
    Bocchia M; Bronte V; Colombo MP; De Vincentiis A; Di Nicola M; Forni G; Lanata L; Lemoli RM; Massaia M; Rondelli D; Zanon P; Tura S
    Haematologica; 2000 Nov; 85(11):1172-206. PubMed ID: 11074658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors.
    Cho H; Kim K
    Expert Opin Drug Deliv; 2024 Apr; 21(4):627-638. PubMed ID: 38682272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining brachytherapy and immunotherapy to achieve in situ tumor vaccination: A review of cooperative mechanisms and clinical opportunities.
    Patel RB; Baniel CC; Sriramaneni RN; Bradley K; Markovina S; Morris ZS
    Brachytherapy; 2018; 17(6):995-1003. PubMed ID: 30078541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ antitumor vaccination: Targeting the tumor microenvironment.
    Li H; Yu J; Wu Y; Shao B; Wei X
    J Cell Physiol; 2020 Jul; 235(7-8):5490-5500. PubMed ID: 32030759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune suppression and reversal of the suppressive tumor microenvironment.
    Shimizu K; Iyoda T; Okada M; Yamasaki S; Fujii SI
    Int Immunol; 2018 Sep; 30(10):445-454. PubMed ID: 29939325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining High-Z Sensitized Radiotherapy with CD73 Blockade to Boost Tumor Immunotherapy.
    Chen Q; Chen J; Zhang Q; Yang P; Gu R; Ren H; Dai Y; Huang S; Wu J; Wu X; Hu Y; Yuan A
    ACS Nano; 2023 Jul; 17(13):12087-12100. PubMed ID: 37327456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priming and Propagating Anti-tumor Immunity: Focal Hypofractionated Radiation for in Situ Vaccination and Systemic Targeted Radionuclide Theranostics for Immunomodulation of Tumor Microenvironments.
    Jagodinsky JC; Morris ZS
    Semin Radiat Oncol; 2020 Apr; 30(2):181-186. PubMed ID: 32381297
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Mao C; Gorbet MJ; Singh A; Ranjan A; Fiering S
    Int J Hyperthermia; 2020 Dec; 37(3):4-17. PubMed ID: 33455477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses.
    Aaes TL; Vandenabeele P
    Cell Death Differ; 2021 Mar; 28(3):843-860. PubMed ID: 33214663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role of immunotherapy in urothelial carcinoma-Immunobiology/biomarkers.
    Sweis RF; Galsky MD
    Urol Oncol; 2016 Dec; 34(12):556-565. PubMed ID: 27836246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.