These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Aerosol Acidity: Novel Measurements and Implications for Atmospheric Chemistry. Ault AP Acc Chem Res; 2020 Sep; 53(9):1703-1714. PubMed ID: 32786333 [TBL] [Abstract][Full Text] [Related]
3. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth. Tang M; Alexander JM; Kwon D; Estillore AD; Laskina O; Young MA; Kleiber PD; Grassian VH J Phys Chem A; 2016 Jun; 120(24):4155-66. PubMed ID: 27253434 [TBL] [Abstract][Full Text] [Related]
4. Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study. Kalume A; Wang C; Pan YL Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924223 [TBL] [Abstract][Full Text] [Related]
5. Optical deformation of single aerosol particles. Rafferty A; Gorkowski K; Zuend A; Preston TC Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19880-19886. PubMed ID: 31527232 [TBL] [Abstract][Full Text] [Related]
6. Measuring the size and complex refractive index of an aqueous aerosol particle using electromagnetic heating and cavity-enhanced Raman scattering. Rafferty A; Preston TC Phys Chem Chem Phys; 2018 Jun; 20(25):17038-17047. PubMed ID: 29911705 [TBL] [Abstract][Full Text] [Related]
7. A Collection of Molecular Fingerprints of Single Aerosol Particles in Air for Potential Identification and Detection Using Optical Trapping-Raman Spectroscopy. Alali H; Ai Y; Pan YL; Videen G; Wang C Molecules; 2022 Sep; 27(18):. PubMed ID: 36144702 [TBL] [Abstract][Full Text] [Related]
8. Optical Interrogation of Single Levitated Droplets in a Linear Quadrupole Trap by Cavity Ring-Down Spectroscopy. Valenzuela A; Chu F; Haddrell AE; Cotterell MI; Walker JS; Orr-Ewing AJ; Reid JP J Phys Chem A; 2021 Jan; 125(1):394-405. PubMed ID: 33355458 [TBL] [Abstract][Full Text] [Related]
9. Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. Morrison H; van Lier-Walqui M; Fridlind AM; Grabowski WW; Harrington JY; Hoose C; Korolev A; Kumjian MR; Milbrandt JA; Pawlowska H; Posselt DJ; Prat OP; Reimel KJ; Shima SI; van Diedenhoven B; Xue L J Adv Model Earth Syst; 2020 Aug; 12(8):e2019MS001689. PubMed ID: 32999700 [TBL] [Abstract][Full Text] [Related]
10. Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity. Diveky ME; Roy S; David G; Cremer JW; Signorell R Photoacoustics; 2020 Jun; 18():100170. PubMed ID: 32211293 [TBL] [Abstract][Full Text] [Related]
11. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Artaxo P; Rizzo LV; Brito JF; Barbosa HM; Arana A; Sena ET; Cirino GG; Bastos W; Martin ST; Andreae MO Faraday Discuss; 2013; 165():203-35. PubMed ID: 24601004 [TBL] [Abstract][Full Text] [Related]
12. Micro-droplet Trapping and Manipulation: Understanding Aerosol Better for a Healthier Environment. Chang YP; Devi Y; Chen CH Chem Asian J; 2021 Jul; 16(13):1644-1660. PubMed ID: 33999498 [TBL] [Abstract][Full Text] [Related]
13. Accurate Measurement of the Optical Properties of Single Aerosol Particles Using Cavity Ring-Down Spectroscopy. Cotterell MI; Knight JW; Reid JP; Orr-Ewing AJ J Phys Chem A; 2022 May; 126(17):2619-2631. PubMed ID: 35467353 [TBL] [Abstract][Full Text] [Related]
14. Aerosol scattering of vortex beams transmission in hazy atmosphere. Shi C; Guo L; Cheng M; Lavery MP; Liu S Opt Express; 2020 Sep; 28(19):28072-28084. PubMed ID: 32988086 [TBL] [Abstract][Full Text] [Related]
15. Molecular Specificity and Proton Transfer Mechanisms in Aerosol Prenucleation Clusters Relevant to New Particle Formation. Hou GL; Wang XB Acc Chem Res; 2020 Dec; 53(12):2816-2827. PubMed ID: 33108162 [TBL] [Abstract][Full Text] [Related]
16. A large source of low-volatility secondary organic aerosol. Ehn M; Thornton JA; Kleist E; Sipilä M; Junninen H; Pullinen I; Springer M; Rubach F; Tillmann R; Lee B; Lopez-Hilfiker F; Andres S; Acir IH; Rissanen M; Jokinen T; Schobesberger S; Kangasluoma J; Kontkanen J; Nieminen T; Kurtén T; Nielsen LB; Jørgensen S; Kjaergaard HG; Canagaratna M; Maso MD; Berndt T; Petäjä T; Wahner A; Kerminen VM; Kulmala M; Worsnop DR; Wildt J; Mentel TF Nature; 2014 Feb; 506(7489):476-9. PubMed ID: 24572423 [TBL] [Abstract][Full Text] [Related]
17. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
18. Comparison of aerosol properties derived from sampling and near-horizontal lidar measurements using Mie scattering theory. Xiafukaiti A; Lagrosas N; Mariel Ong P; Saitoh N; Shiina T; Kuze H Appl Opt; 2020 Sep; 59(26):8014-8022. PubMed ID: 32976477 [TBL] [Abstract][Full Text] [Related]
19. Shape Discrimination of Individual Aerosol Particles Using Light Scattering. Han Y; Ding L; Wang Y; Zheng H; Fang L Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420631 [TBL] [Abstract][Full Text] [Related]