BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36852610)

  • 1. Explainable fMRI-based brain decoding via spatial temporal-pyramid graph convolutional network.
    Ye Z; Qu Y; Liang Z; Wang M; Liu Q
    Hum Brain Mapp; 2023 May; 44(7):2921-2935. PubMed ID: 36852610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jointly Fusing Multi-Scale Spatial-Logical Brain Networks: A Neural Decoding Method.
    Li Z; Zhu Z; Li Q; Wu X
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):445-456. PubMed ID: 36121946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task sub-type states decoding via group deep bidirectional recurrent neural network.
    Zhao S; Fang L; Yang Y; Tang G; Luo G; Han J; Liu T; Hu X
    Med Image Anal; 2024 May; 94():103136. PubMed ID: 38489895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
    Rastegarnia S; St-Laurent M; DuPre E; Pinsard B; Bellec P
    Neuroimage; 2023 Dec; 283():120395. PubMed ID: 37832707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical multi-resolution mesh networks for brain decoding.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2018 Aug; 12(4):1067-1083. PubMed ID: 28980144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional annotation of human cognitive states using deep graph convolution.
    Zhang Y; Tetrel L; Thirion B; Bellec P
    Neuroimage; 2021 May; 231():117847. PubMed ID: 33582272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs).
    Yan J; Chen Y; Xiao Z; Zhang S; Jiang M; Wang T; Zhang T; Lv J; Becker B; Zhang R; Zhu D; Han J; Yao D; Kendrick KM; Liu T; Jiang X
    Med Image Anal; 2022 Aug; 80():102518. PubMed ID: 35749981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
    Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; Liò P; Toschi N
    Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain structure-function coupling provides signatures for task decoding and individual fingerprinting.
    Griffa A; Amico E; Liégeois R; Van De Ville D; Preti MG
    Neuroimage; 2022 Apr; 250():118970. PubMed ID: 35124226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences.
    Saeidi M; Karwowski W; Farahani FV; Fiok K; Hancock PA; Sawyer BD; Christov-Moore L; Douglas PK
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding.
    Hannum A; Lopez MA; Blanco SA; Betzel RF
    Hum Brain Mapp; 2023 Nov; 44(16):5294-5308. PubMed ID: 37498048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding and mapping task states of the human brain via deep learning.
    Wang X; Liang X; Jiang Z; Nguchu BA; Zhou Y; Wang Y; Wang H; Li Y; Zhu Y; Wu F; Gao JH; Qiu B
    Hum Brain Mapp; 2020 Apr; 41(6):1505-1519. PubMed ID: 31816152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity.
    Huang SG; Xia J; Xu L; Qiu A
    Med Image Anal; 2022 Apr; 77():102370. PubMed ID: 35144197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BrainTGL: A dynamic graph representation learning model for brain network analysis.
    Liu L; Wen G; Cao P; Hong T; Yang J; Zhang X; Zaiane OR
    Comput Biol Med; 2023 Feb; 153():106521. PubMed ID: 36630830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Brain States From fMRI Signals by Using Unsupervised Domain Adaptation.
    Gao Y; Zhang Y; Cao Z; Guo X; Zhang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1677-1685. PubMed ID: 31514162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.
    Tang H; Ma G; Guo L; Fu X; Huang H; Zhan L
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7363-7375. PubMed ID: 36374890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiable neural architecture search for optimal spatial/temporal brain function network decomposition.
    Li Q; Wu X; Liu T
    Med Image Anal; 2021 Apr; 69():101974. PubMed ID: 33588118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitask fMRI Data Classification via Group-Wise Hybrid Temporal and Spatial Sparse Representations.
    Song L; Ren Y; Hou Y; He X; Liu H
    eNeuro; 2022; 9(3):. PubMed ID: 35606152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.