These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36853041)

  • 1. Adaptation to Overflow Metabolism by Mutations That Impair tRNA Modification in Experimentally Evolved Bacteria.
    Muraski MJ; Nilsson EM; Fritz MJ; Richardson AR; Alexander RW; Cooper VS
    mBio; 2023 Apr; 14(2):e0028723. PubMed ID: 36853041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase.
    Nakanishi K; Bonnefond L; Kimura S; Suzuki T; Ishitani R; Nureki O
    Nature; 2009 Oct; 461(7267):1144-8. PubMed ID: 19847269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life without the essential bacterial tRNA Ile2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis.
    Fabret C; Dervyn E; Dalmais B; Guillot A; Marck C; Grosjean H; Noirot P
    Mol Microbiol; 2011 May; 80(4):1062-74. PubMed ID: 21435031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain.
    Nakanishi K; Fukai S; Ikeuchi Y; Soma A; Sekine Y; Suzuki T; Nureki O
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7487-92. PubMed ID: 15894617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition.
    Ikeuchi Y; Soma A; Ote T; Kato J; Sekine Y; Suzuki T
    Mol Cell; 2005 Jul; 19(2):235-46. PubMed ID: 16039592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA.
    Soma A; Ikeuchi Y; Kanemasa S; Kobayashi K; Ogasawara N; Ote T; Kato J; Watanabe K; Sekine Y; Suzuki T
    Mol Cell; 2003 Sep; 12(3):689-98. PubMed ID: 14527414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and characterization of tRNAIle lysidine synthetase (TilS).
    Suzuki T; Miyauchi K
    FEBS Lett; 2010 Jan; 584(2):272-7. PubMed ID: 19944692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of the tRNA wobble cytidine modification essential for AUA codon decoding in prokaryotes.
    Numata T
    Biosci Biotechnol Biochem; 2015; 79(3):347-53. PubMed ID: 25348586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of ATP-Competitive Inhibitors of tRNAIle Lysidine Synthetase (TilS) by High-Throughput Screening.
    Shapiro AB; Plant H; Walsh J; Sylvester M; Hu J; Gao N; Livchak S; Tentarelli S; Thresher J
    J Biomol Screen; 2014 Sep; 19(8):1137-46. PubMed ID: 24820111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of tRNA
    Uesugi G; Fukuba Y; Yamamoto T; Inaba N; Furukawa H; Yoshizawa S; Tomikawa C; Takai K
    FEBS J; 2022 Aug; 289(16):4888-4900. PubMed ID: 35122395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding system for the AUA codon by tRNAIle with the UAU anticodon in Mycoplasma mobile.
    Taniguchi T; Miyauchi K; Nakane D; Miyata M; Muto A; Nishimura S; Suzuki T
    Nucleic Acids Res; 2013 Feb; 41(4):2621-31. PubMed ID: 23295668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site Specific Lysine Acetylation of Histones for Nucleosome Reconstitution using Genetic Code Expansion in Escherichia coli.
    Rowlett CM; Liu WR
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33427240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial wobble modifications of NNA-decoding tRNAs.
    Nilsson EM; Alexander RW
    IUBMB Life; 2019 Aug; 71(8):1158-1166. PubMed ID: 31283100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrrolysyl-tRNA Synthetase with a Unique Architecture Enhances the Availability of Lysine Derivatives in Synthetic Genetic Codes.
    Yamaguchi A; Iraha F; Ohtake K; Sakamoto K
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic conversion of cytidine to lysidine in anticodon of bacterial isoleucyl-tRNA--an alternative way of RNA editing.
    Grosjean H; Björk GR
    Trends Biochem Sci; 2004 Apr; 29(4):165-8. PubMed ID: 15124629
    [No Abstract]   [Full Text] [Related]  

  • 17. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation.
    Brevet A; Chen J; Commans S; Lazennec C; Blanquet S; Plateau P
    J Biol Chem; 2003 Aug; 278(33):30927-35. PubMed ID: 12766171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent evolution of AUA decoding in bacteria and archaea.
    Suzuki T; Numata T
    RNA Biol; 2014; 11(12):1586-96. PubMed ID: 25629511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the impact of disease-causing mutations in an essential aminoacyl-tRNA synthetase.
    Sissler M
    J Biol Chem; 2021 Dec; 297(6):101386. PubMed ID: 34752820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.