BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36853042)

  • 21. HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo.
    Amarelle V; Rosconi F; Lázaro-Martínez JM; Buldain G; Noya F; O'Brian MR; Fabiano E
    Biometals; 2016 Apr; 29(2):333-47. PubMed ID: 26906560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulation of Magnesium Transport Protects Bacillus subtilis against Manganese and Cobalt Intoxication.
    Pi H; Wendel BM; Helmann JD
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31964700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti.
    Orozco-Mosqueda Mdel C; Macías-Rodríguez LI; Santoyo G; Farías-Rodríguez R; Valencia-Cantero E
    Folia Microbiol (Praha); 2013 Nov; 58(6):579-85. PubMed ID: 23564626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility.
    Amaya-Gómez CV; Hirsch AM; Soto MJ
    BMC Microbiol; 2015 Mar; 15():58. PubMed ID: 25887945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.
    Lambert A; Østerås M; Mandon K; Poggi MC; Le Rudulier D
    J Bacteriol; 2001 Aug; 183(16):4709-17. PubMed ID: 11466273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specificity profile of NAT/NCS2 purine transporters in Sinorhizobium (Ensifer) meliloti.
    Botou M; Yalelis V; Lazou P; Zantza I; Papakostas K; Charalambous V; Mikros E; Flemetakis E; Frillingos S
    Mol Microbiol; 2020 Jul; 114(1):151-171. PubMed ID: 32198949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sinorhizobium meliloti Glutathione Reductase Is Required for both Redox Homeostasis and Symbiosis.
    Tang G; Li N; Liu Y; Yu L; Yan J; Luo L
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Siderophore-mediated iron transport correlates with the presence of specific iron-regulated proteins in the outer membrane of Rhizobium meliloti.
    Reigh G; O'Connell M
    J Bacteriol; 1993 Jan; 175(1):94-102. PubMed ID: 8416915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of
    Grunenwald CM; Choby JE; Juttukonda LJ; Beavers WN; Weiss A; Torres VJ; Skaar EP
    mBio; 2019 Feb; 10(1):. PubMed ID: 30808698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti.
    Santos MR; Cosme AM; Becker JD; Medeiros JM; Mata MF; Moreira LM
    BMC Microbiol; 2010 Jun; 10():180. PubMed ID: 20573193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus
    Batko IZ; Flannagan RS; Guariglia-Oropeza V; Sheldon JR; Heinrichs DE
    J Bacteriol; 2021 Nov; 203(24):e0045821. PubMed ID: 34606375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011.
    Viguier C; O Cuív P; Clarke P; O'Connell M
    FEMS Microbiol Lett; 2005 May; 246(2):235-42. PubMed ID: 15899411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage.
    Lehman AP; Long SR
    J Bacteriol; 2013 Dec; 195(23):5362-9. PubMed ID: 24078609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SLC46A1 contributes to hepatic iron metabolism by importing heme in hepatocytes.
    Li H; Wang D; Wu H; Shen H; Lv D; Zhang Y; Lu H; Yang J; Tang Y; Li M
    Metabolism; 2020 Sep; 110():154306. PubMed ID: 32621820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming.
    Nogales J; Domínguez-Ferreras A; Amaya-Gómez CV; van Dillewijn P; Cuéllar V; Sanjuán J; Olivares J; Soto MJ
    BMC Genomics; 2010 Mar; 11():157. PubMed ID: 20210991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants.
    van Dillewijn P; Sanjuán J; Olivares J; Soto MJ
    BMC Microbiol; 2009 Jan; 9():17. PubMed ID: 19173735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the Sinorhizobium meliloti HslUV and ClpXP Protease Systems in Free-Living and Symbiotic States.
    Ogden AJ; McAleer JM; Kahn ML
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.
    Platero RA; Jaureguy M; Battistoni FJ; Fabiano ER
    FEMS Microbiol Lett; 2003 Jan; 218(1):65-70. PubMed ID: 12583899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox-sensitive fluorescent biosensors detect Sinorhizobium meliloti intracellular redox changes under free-living and symbiotic lifestyles.
    Pacoud M; Mandon K; Cazareth J; Pierre O; Frendo P; Alloing G
    Free Radic Biol Med; 2022 May; 184():185-195. PubMed ID: 35390454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.