BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36853042)

  • 61. Genetic characterization of oligopeptide uptake systems in Sinorhizobium meliloti.
    Nogales J; Muñoz S; Olivares J; Sanjuán J
    FEMS Microbiol Lett; 2009 Apr; 293(2):177-87. PubMed ID: 19522956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport.
    Zielazinski EL; González-Guerrero M; Subramanian P; Stemmler TL; Argüello JM; Rosenzweig AC
    Metallomics; 2013 Dec; 5(12):1614-1623. PubMed ID: 24056637
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of Polyhydroxybutyrate Accumulation in Sinorhizobium meliloti by the
    Lagares A; Borella GC; Linne U; Becker A; Valverde C
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An ABC transporter is required for alkaline stress and potassium transport regulation in Sinorhizobium meliloti.
    Lin DX; Tang H; Wang ET; Chen WX
    FEMS Microbiol Lett; 2009 Apr; 293(1):35-41. PubMed ID: 19220474
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti.
    Maclean AM; White CE; Fowler JE; Finan TM
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in Candida albicans.
    Weissman Z; Pinsky M; Donegan RK; Reddi AR; Kornitzer D
    Cell Microbiol; 2021 Feb; 23(2):e13282. PubMed ID: 33104284
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions.
    Griffitts JS; Long SR
    Mol Microbiol; 2008 Mar; 67(6):1292-306. PubMed ID: 18284576
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia.
    Furnholm TR; Tisa LS
    BMC Genomics; 2014 Dec; 15():1092. PubMed ID: 25495525
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms.
    Wehmeier S; Arnold MFF; Marlow VL; Aouida M; Myka KK; Fletcher V; Benincasa M; Scocchi M; Ramotar D; Ferguson GP
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2702-2713. PubMed ID: 20507886
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The developmental and iron nutritional pattern of PIC1 and NiCo does not support their interdependent and exclusive collaboration in chloroplast iron transport in Brassica napus.
    Pham HD; Pólya S; Müller B; Szenthe K; Sági-Kazár M; Bánkúti B; Bánáti F; Sárvári É; Fodor F; Tamás L; Philippar K; Solti Á
    Planta; 2020 Apr; 251(5):96. PubMed ID: 32297017
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Regulation of heme utilization and homeostasis in Candida albicans.
    Andrawes N; Weissman Z; Pinsky M; Moshe S; Berman J; Kornitzer D
    PLoS Genet; 2022 Sep; 18(9):e1010390. PubMed ID: 36084128
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria.
    Travin DY; Jouan R; Vigouroux A; Inaba-Inoue S; Lachat J; Haq F; Timchenko T; Sutormin D; Dubiley S; Beis K; Moréra S; Severinov K; Mergaert P
    mBio; 2023 Apr; 14(2):e0021723. PubMed ID: 36802165
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth.
    López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O
    Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Heterologous expression of Anabaena sp. PCC7120 cyanophycin metabolism genes cphA1 and cphB1 in Sinorhizobium (Ensifer) meliloti 1021.
    Abd-El-Karem Y; Elbers T; Reichelt R; Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1177-92. PubMed ID: 20938772
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular Mechanisms of Iron and Heme Metabolism.
    Dutt S; Hamza I; Bartnikas TB
    Annu Rev Nutr; 2022 Aug; 42():311-335. PubMed ID: 35508203
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of an atypical superoxide dismutase from Sinorhizobium meliloti.
    Santos R; Bocquet S; Puppo A; Touati D
    J Bacteriol; 1999 Aug; 181(15):4509-16. PubMed ID: 10419947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. McpT, a Broad-Range Carboxylate Chemoreceptor in Sinorhizobium meliloti.
    Baaziz H; Compton KK; Hildreth SB; Helm RF; Scharf BE
    J Bacteriol; 2021 Aug; 203(17):e0021621. PubMed ID: 34124939
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti.
    Baumgardt K; Melior H; Madhugiri R; Thalmann S; Schikora A; McIntosh M; Becker A; Evguenieva-Hackenberg E
    Microbiology (Reading); 2017 Apr; 163(4):570-583. PubMed ID: 28141492
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1.
    Schallies KB; Sadowski C; Meng J; Chien P; Gibson KE
    J Bacteriol; 2015 Jul; 197(13):2139-2149. PubMed ID: 25897034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.