BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36853225)

  • 1. Real-Time Intracellular Analysis of Kanamycin Using Microaptasensors.
    Gupta V; Dick JE
    ACS Sens; 2023 Mar; 8(3):1143-1150. PubMed ID: 36853225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-aptamers binding aminoglycoside antibiotics.
    Nikolaus N; Strehlitz B
    Sensors (Basel); 2014 Feb; 14(2):3737-55. PubMed ID: 24566637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity.
    Yu Z; Han X; Li F; Tan X; Shi W; Fu C; Yan H; Zhang G
    Anal Bioanal Chem; 2020 Apr; 412(11):2391-2397. PubMed ID: 32076786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptasensors for quantitative detection of kanamycin.
    Robati RY; Arab A; Ramezani M; Langroodi FA; Abnous K; Taghdisi SM
    Biosens Bioelectron; 2016 Aug; 82():162-72. PubMed ID: 27085947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of a dual-aptasensor for simultaneous detection of chloramphenicol and kanamycin.
    Gao Z; Du X; Ding Y; Li H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Jul; 38(7):1148-1156. PubMed ID: 34006198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction.
    Zhang K; Gan N; Hu F; Chen X; Li T; Cao J
    Mikrochim Acta; 2018 Feb; 185(3):181. PubMed ID: 29594631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance.
    Han X; Yu Z; Li F; Shi W; Fu C; Yan H; Zhang G
    Bioelectrochemistry; 2019 Oct; 129():270-277. PubMed ID: 31254804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free detection of kanamycin using aptamer-based cantilever array sensor.
    Bai X; Hou H; Zhang B; Tang J
    Biosens Bioelectron; 2014 Jun; 56():112-6. PubMed ID: 24480130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism.
    Xu Y; Han T; Li X; Sun L; Zhang Y; Zhang Y
    Anal Chim Acta; 2015 Sep; 891():298-303. PubMed ID: 26388390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer biorecognition-triggered DNAzyme liberation and Exo III-assisted target recycling for ultrasensitive homogeneous colorimetric bioassay of kanamycin antibiotic.
    Chen Z; Xiong F; Yu A; Lai G
    Chem Commun (Camb); 2019 Apr; 55(27):3959-3962. PubMed ID: 30874255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites.
    Li R; Liu Y; Cheng L; Yang C; Zhang J
    Anal Chem; 2014 Oct; 86(19):9372-5. PubMed ID: 25219771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Multivalence Aptamer Probes for Amplified and Label-Free Detection of Antibiotics in Aquatic Products.
    Zhang Y; Hu Y; Deng S; Yuan Z; Li C; Lu Y; He Q; Zhou M; Deng R
    J Agric Food Chem; 2020 Feb; 68(8):2554-2561. PubMed ID: 32027503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin.
    Yang Z; Liu M; Li B
    Mikrochim Acta; 2020 Nov; 187(12):678. PubMed ID: 33247409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA cyclic assembling control in an electrochemical strategy with MoS
    Wang L; Zhang L; Yu Y; Lin B; Wang Y; Guo M; Cao Y
    Mikrochim Acta; 2021 Jul; 188(8):264. PubMed ID: 34287718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A trivalent aptasensor by using DNA tetrahedron as scaffold for label-free determination of antibiotics.
    Ye T; Xu Y; Chen H; Yuan M; Cao H; Hao L; Wu X; Yin F; Xu F
    Biosens Bioelectron; 2024 May; 251():116127. PubMed ID: 38382272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel SERS sensor for the ultrasensitive detection of kanamycin based on a Zn-doped carbon quantum dot catalytic switch controlled by nucleic acid aptamer and size-controlled gold nanorods.
    Wang X; Chen C; Waterhouse GIN; Qiao X; Xu Z
    Food Chem; 2021 Nov; 362():130261. PubMed ID: 34111691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles.
    He B; Yan S
    Mikrochim Acta; 2019 Jan; 186(2):77. PubMed ID: 30627864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.