These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 36853239)
1. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing Herman KM; Xantheas SS Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239 [TBL] [Abstract][Full Text] [Related]
2. Ab Initio Quantum Approaches to the IR Spectroscopy of Water and Hydrates. Bowman JM; Wang Y; Liu H; Mancini JS J Phys Chem Lett; 2015 Feb; 6(3):366-73. PubMed ID: 26261949 [TBL] [Abstract][Full Text] [Related]
3. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment. Liu H; Wang Y; Bowman JM J Chem Phys; 2015 May; 142(19):194502. PubMed ID: 26001464 [TBL] [Abstract][Full Text] [Related]
4. The i-TTM model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions. Riera M; Götz AW; Paesani F Phys Chem Chem Phys; 2016 Nov; 18(44):30334-30343. PubMed ID: 27711564 [TBL] [Abstract][Full Text] [Related]
5. The Many-Body Expansion for Aqueous Systems Revisited: I. Water-Water Interactions. Heindel JP; Xantheas SS J Chem Theory Comput; 2020 Nov; 16(11):6843-6855. PubMed ID: 33064486 [TBL] [Abstract][Full Text] [Related]
6. High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials. Fanourgakis GS; Aprà E; Xantheas SS J Chem Phys; 2004 Aug; 121(6):2655-63. PubMed ID: 15281866 [TBL] [Abstract][Full Text] [Related]
7. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
8. Many-Body Interactions in Ice. Pham CH; Reddy SK; Chen K; Knight C; Paesani F J Chem Theory Comput; 2017 Apr; 13(4):1778-1784. PubMed ID: 28245359 [TBL] [Abstract][Full Text] [Related]
9. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface. Bauer BA; Warren GL; Patel S J Chem Theory Comput; 2009 Feb; 5(2):359-373. PubMed ID: 23133341 [TBL] [Abstract][Full Text] [Related]
10. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions. Wang Y; Bowman JM; Kamarchik E J Chem Phys; 2016 Mar; 144(11):114311. PubMed ID: 27004880 [TBL] [Abstract][Full Text] [Related]
11. i-TTM Model for Ab Initio-Based Ion-Water Interaction Potentials. 1. Halide-Water Potential Energy Functions. Arismendi-Arrieta DJ; Riera M; Bajaj P; Prosmiti R; Paesani F J Phys Chem B; 2016 Mar; 120(8):1822-32. PubMed ID: 26560189 [TBL] [Abstract][Full Text] [Related]
12. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer. Wang Y; Huang X; Shepler BC; Braams BJ; Bowman JM J Chem Phys; 2011 Mar; 134(9):094509. PubMed ID: 21384987 [TBL] [Abstract][Full Text] [Related]
13. Isomers of the uracil dimer: an ab initio benchmark study. Frey JA; Müller A; Losada M; Leutwyler S J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514 [TBL] [Abstract][Full Text] [Related]
14. Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H2O)n = 2, 3, 4, 5, 6. Howard JC; Tschumper GS J Chem Theory Comput; 2015 May; 11(5):2126-36. PubMed ID: 26574415 [TBL] [Abstract][Full Text] [Related]
15. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
16. Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model. Herman KM; Stone AJ; Xantheas SS J Chem Theory Comput; 2023 Oct; 19(19):6805-6815. PubMed ID: 37703063 [TBL] [Abstract][Full Text] [Related]
17. The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion-Water Interactions. Heindel JP; Xantheas SS J Chem Theory Comput; 2021 Apr; 17(4):2200-2216. PubMed ID: 33709708 [TBL] [Abstract][Full Text] [Related]
18. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains. Nagy PI; Erhardt PW J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368 [TBL] [Abstract][Full Text] [Related]
19. Water nanodroplets: predictions of five model potentials. Kazachenko S; Thakkar AJ J Chem Phys; 2013 May; 138(19):194302. PubMed ID: 23697413 [TBL] [Abstract][Full Text] [Related]
20. Aiming for benchmark accuracy with the many-body expansion. Richard RM; Lao KU; Herbert JM Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]