These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36853660)

  • 21. Efficient CRISPR-Cas9-mediated genome editing for characterization of essential genes in
    Picchi-Constante GFA; Hiraiwa PM; Marek M; Rogerio VZ; Guerra-Slompo EP; Romier C; Zanchin NIT
    STAR Protoc; 2022 Jun; 3(2):101324. PubMed ID: 35496799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence-Based Guide to Using Artificial Introns for Tissue-Specific Knockout in Mice.
    McBeath E; Fujiwara K; Hofmann MC
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9 Ribonucleoprotein-Mediated Genomic Editing in Primary Innate Immune Cells.
    Hildreth AD; Riggan L; O'Sullivan TE
    STAR Protoc; 2020 Dec; 1(3):100113. PubMed ID: 33377009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene Replacement by Intron Targeting with CRISPR-Cas9.
    Li J; Meng X; Li J; Gao C
    Methods Mol Biol; 2019; 1917():285-296. PubMed ID: 30610644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocols for transgenesis at a safe harbor site in the Xenopus laevis genome using CRISPR-Cas9.
    Shibata Y; Okumura A; Mochii M; Suzuki KT
    STAR Protoc; 2023 Sep; 4(3):102382. PubMed ID: 37389994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing in
    Sinha T; Yazdani SS
    STAR Protoc; 2022 Sep; 3(3):101629. PubMed ID: 36042883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas.
    Nievergelt AP; Diener DR; Bogdanova A; Brown T; Pigino G
    STAR Protoc; 2024 Mar; 5(1):102774. PubMed ID: 38096061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cre/
    Liu F; Kambakam S; Almeida MP; Ming Z; Welker JM; Wierson WA; Schultz-Rogers LE; Ekker SC; Clark KJ; Essner JJ; McGrail M
    Elife; 2022 Jun; 11():. PubMed ID: 35713402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9-Based Genome Editing and Cytidine Base Editing in
    Wang Y; Wang Z; Ji Q
    STAR Protoc; 2020 Jun; 1(1):100025. PubMed ID: 33111078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of
    Pelletier S; Tummers B; Green DR
    STAR Protoc; 2020 Dec; 1(3):100181. PubMed ID: 33377075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas9 strategies to insert MS2 stem-loops into endogenous loci in
    Hoppe C; Ashe HL
    STAR Protoc; 2021 Mar; 2(1):100380. PubMed ID: 33786461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant
    McConville TH; Giddins MJ; Uhlemann AC
    STAR Protoc; 2021 Mar; 2(1):100373. PubMed ID: 33733242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening of CRISPR-Cas9-generated point mutant mice using MiSeq and locked nucleic acid probe PCR.
    Vasu K; Fox PL
    STAR Protoc; 2021 Dec; 2(4):100785. PubMed ID: 34585153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants.
    Codner GF; Mianné J; Caulder A; Loeffler J; Fell R; King R; Allan AJ; Mackenzie M; Pike FJ; McCabe CV; Christou S; Joynson S; Hutchison M; Stewart ME; Kumar S; Simon MM; Agius L; Anstee QM; Volynski KE; Kullmann DM; Wells S; Teboul L
    BMC Biol; 2018 Jun; 16(1):70. PubMed ID: 29925374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized protocol for CRISPR knockout of human iPSC-derived macrophages.
    Navarro-Guerrero E; Baronio R; Tay C; Knight JC; Ebner DV
    STAR Protoc; 2024 Mar; 5(1):102903. PubMed ID: 38401123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heritable CRISPR-Cas9 editing of plant genomes using RNA virus vectors.
    Uranga M; Aragonés V; Daròs JA; Pasin F
    STAR Protoc; 2023 Mar; 4(1):102091. PubMed ID: 36853698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-fidelity, efficient, and reversible labeling of endogenous proteins using CRISPR-based designer exon insertion.
    Zhong H; Ceballos CC; Massengill CI; Muniak MA; Ma L; Qin M; Petrie SK; Mao T
    Elife; 2021 Jun; 10():. PubMed ID: 34100715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9-mediated induction of large chromosomal inversions in human bronchial epithelial cells.
    Angelopoulou A; Papaspyropoulos A; Papantonis A; Gorgoulis VG
    STAR Protoc; 2022 Jun; 3(2):101257. PubMed ID: 35330963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.