BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36853676)

  • 1. Microfluidics and fluorescence microscopy protocol to study the response of C. elegans to chemosensory stimuli.
    Bruggeman CW; Haasnoot GH; Peterman EJG
    STAR Protoc; 2023 Mar; 4(1):102121. PubMed ID: 36853676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip.
    Wang Y; Wang J; Du W; Feng XJ; Liu BF
    Anal Bioanal Chem; 2011 Apr; 399(10):3475-81. PubMed ID: 20842350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip.
    Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA
    Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocols for electrophysiological recordings and electron microscopy at
    Liu H; Li L; Krout M; Sheoran S; Zhao Q; Chen J; Liu H; Richmond JE; Hu Z
    STAR Protoc; 2021 Sep; 2(3):100749. PubMed ID: 34430921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protocol for imaging calcium and chloride in
    Fernandez-Abascal J; Bianchi L
    STAR Protoc; 2022 Jun; 3(2):101282. PubMed ID: 35463465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live imaging of postembryonic developmental processes in
    Li T; Wang X; Feng Z; Zou Y
    STAR Protoc; 2022 Jun; 3(2):101336. PubMed ID: 35496803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration.
    Suzuki M; Sakashita T; Hattori Y; Yokota Y; Kobayashi Y; Funayama T
    J Neurosci Methods; 2018 Aug; 306():32-37. PubMed ID: 29859879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing locomotory rate in response to food for the identification of neuronal and muscular defects in C. elegans.
    Petratou D; Fragkiadaki P; Lionaki E; Tavernarakis N
    STAR Protoc; 2024 Mar; 5(1):102801. PubMed ID: 38159271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for determining the average speed and frequency of kinesin and dynein-driven intraflagellar transport (IFT) in C. elegans.
    Turan MG; Kantarci H; Temtek SD; Cakici O; Cevik S; Kaplan OI
    STAR Protoc; 2022 Sep; 3(3):101498. PubMed ID: 35776634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiated dynamic response in C. elegans chemosensory cilia.
    Bruggeman CW; Haasnoot GH; Danné N; van Krugten J; Peterman EJG
    Cell Rep; 2022 Oct; 41(2):111471. PubMed ID: 36223754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for near-infrared optogenetics manipulation of neurons and motor behavior in C. elegans using emissive upconversion nanoparticles.
    Wang R; Guo J; Yao H; Luo X; Deng Y; Tian Y; Zhang Y; Gao S
    STAR Protoc; 2024 Mar; 5(1):102858. PubMed ID: 38294907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic platform for the study of Caenorhabditis elegans.
    Shi W; Wen H; Lin B; Qin J
    Top Curr Chem; 2011; 304():323-38. PubMed ID: 21516386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol to perform dynamic microfluidic single-cell cultivation of C. glutamicum.
    Blöbaum L; Täuber S; Grünberger A
    STAR Protoc; 2023 Sep; 4(3):102436. PubMed ID: 37543944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to assess receptor-ligand binding in C. elegans using adapted thermal shift assays.
    Tse SY; Pukkila-Worley R
    STAR Protoc; 2023 Sep; 4(3):102477. PubMed ID: 37527042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using an Adapted Microfluidic Olfactory Chip for the Imaging of Neuronal Activity in Response to Pheromones in Male C. Elegans Head Neurons.
    Reilly DK; Lawler DE; Albrecht DR; Srinivasan J
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for assessing the healthspan of Caenorhabditis elegans after potential anti-aging drug treatment.
    Xiao Y; Zhang L; Liu Y
    STAR Protoc; 2023 May; 4(2):102285. PubMed ID: 37148246
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wang X; Li T; Hu J; Feng Z; Zhong R; Nie W; Yang X; Zou Y
    STAR Protoc; 2021 Mar; 2(1):100309. PubMed ID: 33598656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail.
    Hilliard MA; Bargmann CI; Bazzicalupo P
    Curr Biol; 2002 Apr; 12(9):730-4. PubMed ID: 12007416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recording of behavioral and neural responses of free-moving nematodes
    Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    STAR Protoc; 2021 Dec; 2(4):101011. PubMed ID: 34917983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.