BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36853689)

  • 41. Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair.
    Ababneh NA; Scaber J; Flynn R; Douglas A; Barbagallo P; Candalija A; Turner MR; Sims D; Dafinca R; Cowley SA; Talbot K
    Hum Mol Genet; 2020 Aug; 29(13):2200-2217. PubMed ID: 32504093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
    Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I
    Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9-Mediated Genome Editing to Generate Clonal iPSC Lines.
    Sanjurjo-Soriano C; Erkilic N; Mamaeva D; Kalatzis V
    Methods Mol Biol; 2022; 2454():589-606. PubMed ID: 33755901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification of Pluripotent Stem Cell-Derived Cardiomyocytes Using CRISPR/Cas9-Mediated Integration of Fluorescent Reporters.
    Galdos FX; Darsha AK; Paige SL; Wu SM
    Methods Mol Biol; 2021; 2158():223-240. PubMed ID: 32857377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endogenous Protein Tagging in Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Haupt A; Grancharova T; Arakaki J; Fuqua MA; Roberts B; Gunawardane RN
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.
    Bosch JA; Knight S; Kanca O; Zirin J; Yang-Zhou D; Hu Y; Rodiger J; Amador G; Bellen HJ; Perrimon N; Mohr SE
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e112. PubMed ID: 31869524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.
    Roberts B; Haupt A; Tucker A; Grancharova T; Arakaki J; Fuqua MA; Nelson A; Hookway C; Ludmann SA; Mueller IA; Yang R; Horwitz R; Rafelski SM; Gunawardane RN
    Mol Biol Cell; 2017 Oct; 28(21):2854-2874. PubMed ID: 28814507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Induced Pluripotent Stem Cells Meet Genome Editing.
    Hockemeyer D; Jaenisch R
    Cell Stem Cell; 2016 May; 18(5):573-86. PubMed ID: 27152442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants.
    Wang Q; Liu J; Janssen JM; Gonçalves MAFV
    Nucleic Acids Res; 2023 Apr; 51(7):3465-3484. PubMed ID: 36928106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rates of homology directed repair of CRISPR-Cas9 induced double strand breaks are lower in naïve compared to primed human pluripotent stem cells.
    Dodsworth BT; Hatje K; Meyer CA; Flynn R; Cowley SA
    Stem Cell Res; 2020 Jul; 46():101852. PubMed ID: 32521498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protocol for HiBiT tagging endogenous proteins using CRISPR-Cas9 gene editing.
    Lankford KP; Hulleman JD
    STAR Protoc; 2024 Jun; 5(2):103000. PubMed ID: 38598333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System.
    Thamodaran V; Rani S; Velayudhan SR
    Methods Mol Biol; 2022; 2454():755-773. PubMed ID: 33830454
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting the AAVS1 Site by CRISPR/Cas9 with an Inducible Transgene Cassette for the Neuronal Differentiation of Human Pluripotent Stem Cells.
    Gu J; Rollo B; Sumer H; Cromer B
    Methods Mol Biol; 2022; 2495():99-114. PubMed ID: 35696030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of an Induced Pluripotent Stem Cell Line with the Constitutive EGFP Reporter.
    Butterfield KT; McGrath PS; Han CM; Kogut I; Bilousova G
    Methods Mol Biol; 2020; 2155():11-21. PubMed ID: 32474864
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping.
    Weisheit I; Kroeger JA; Malik R; Wefers B; Lichtner P; Wurst W; Dichgans M; Paquet D
    Nat Protoc; 2021 Mar; 16(3):1714-1739. PubMed ID: 33597771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
    Ben Jehuda R; Shemer Y; Binah O
    Stem Cell Rev Rep; 2018 Jun; 14(3):323-336. PubMed ID: 29623532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells.
    Li M; Hunt JFVS; Bhattacharyya A; Zhao X
    Methods Mol Biol; 2019; 1942():61-69. PubMed ID: 30900175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.