These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36853727)

  • 1. Protocol for quantitative evaluation of the impact of paracrine senescence on cellular reprogramming in cultured cells and mouse models.
    Chantrel J; Chen C; Zhang J; Li H
    STAR Protoc; 2023 Mar; 4(1):102106. PubMed ID: 36853727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle.
    Chiche A; Le Roux I; von Joest M; Sakai H; Aguín SB; Cazin C; Salam R; Fiette L; Alegria O; Flamant P; Tajbakhsh S; Li H
    Cell Stem Cell; 2017 Mar; 20(3):407-414.e4. PubMed ID: 28017795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiregulin mediates non-cell-autonomous effect of senescence on reprogramming.
    von Joest M; Chen C; Douché T; Chantrel J; Chiche A; Gianetto QG; Matondo M; Li H
    Cell Rep; 2022 Jul; 40(2):111074. PubMed ID: 35830812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of autophagy via LC3 western blotting following DNA-damage-induced senescence.
    Yamamoto-Imoto H; Hara E; Nakamura S; Yoshimori T
    STAR Protoc; 2022 Sep; 3(3):101539. PubMed ID: 35819884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Senescence promotes in vivo reprogramming through p16
    Mosteiro L; Pantoja C; de Martino A; Serrano M
    Aging Cell; 2018 Apr; 17(2):. PubMed ID: 29280266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Injury-induced Senescence and In Vivo Reprogramming in the Skeletal Muscle.
    Cazin C; Chiche A; Li H
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for assessing senescence-associated lung pathologies in mice.
    Kawaguchi K; Hashimoto M; Mikawa R; Asai A; Sato T; Sugimoto M
    STAR Protoc; 2021 Dec; 2(4):100993. PubMed ID: 34927099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocols for analysis of mitochondrial permeability transition pore opening in mouse somatic cell reprogramming.
    Ying Z; Liu Z; Xiang G; Xin Y; Wang J; Liu X
    STAR Protoc; 2021 Jun; 2(2):100568. PubMed ID: 34151295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Cellular Senescence in Reprogramming.
    Cazin C; von Joest M; Li H
    Methods Mol Biol; 2019; 1896():1-10. PubMed ID: 30474834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies.
    Melo Pereira S; Ribeiro R; Logarinho E
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical roles of Cyclin D1 in mouse embryonic fibroblast cell reprogramming.
    Oh HR; Kim J; Kim J
    FEBS J; 2016 Dec; 283(24):4549-4568. PubMed ID: 27790870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for Studying Reprogramming of Mouse Pancreatic Acinar Cells to β-like Cells.
    Elhanani O; Walker MD
    STAR Protoc; 2020 Sep; 1(2):100096. PubMed ID: 33111125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paracrine roles of cellular senescence in promoting tumourigenesis.
    Gonzalez-Meljem JM; Apps JR; Fraser HC; Martinez-Barbera JP
    Br J Cancer; 2018 May; 118(10):1283-1288. PubMed ID: 29670296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state.
    Lapasset L; Milhavet O; Prieur A; Besnard E; Babled A; Aït-Hamou N; Leschik J; Pellestor F; Ramirez JM; De Vos J; Lehmann S; Lemaitre JM
    Genes Dev; 2011 Nov; 25(21):2248-53. PubMed ID: 22056670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to Generate Senescent Cells from the Mouse Hepatic Cell Line AML12 to Study Hepatic Aging.
    Tripathi M; Yen PM; Singh BK
    STAR Protoc; 2020 Sep; 1(2):100064. PubMed ID: 33111102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a High-Efficacy Reprogramming Method for Generating Human Induced Pluripotent Stem (iPS) Cells from Pathologic and Senescent Somatic Cells.
    Tanaka N; Kato H; Tsuda H; Sato Y; Muramatsu T; Iguchi A; Nakajima H; Yoshitake A; Senbonmatsu T
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells.
    Kondo H; Kim HW; Wang L; Okada M; Paul C; Millard RW; Wang Y
    Aging Cell; 2016 Feb; 15(1):56-66. PubMed ID: 26637971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence-induced cellular reprogramming drives cnidarian whole-body regeneration.
    Salinas-Saavedra M; Febrimarsa ; Krasovec G; Horkan HR; Baxevanis AD; Frank U
    Cell Rep; 2023 Jul; 42(7):112687. PubMed ID: 37392741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Proteomic Analysis of the Senescence-Associated Secretory Phenotype by Data-Independent Acquisition.
    Neri F; Basisty N; Desprez PY; Campisi J; Schilling B
    Curr Protoc; 2021 Feb; 1(2):e32. PubMed ID: 33524224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Senescence impairs successful reprogramming to pluripotent stem cells.
    Banito A; Rashid ST; Acosta JC; Li S; Pereira CF; Geti I; Pinho S; Silva JC; Azuara V; Walsh M; Vallier L; Gil J
    Genes Dev; 2009 Sep; 23(18):2134-9. PubMed ID: 19696146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.