BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36853733)

  • 1. Protocol for the analysis of double-stranded RNAs in virus-infected insect cells using anti-dsRNA antibodies.
    de Faria IJS; Imler JL; Marques JT
    STAR Protoc; 2023 Mar; 4(1):102033. PubMed ID: 36853733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses.
    Son KN; Liang Z; Lipton HL
    J Virol; 2015 Sep; 89(18):9383-92. PubMed ID: 26136565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knock down of target genes by RNA interference in the embryos of lepidopteran insect,
    Xu G; Tian Y; Peng Y; Zheng S
    STAR Protoc; 2022 Mar; 3(1):101219. PubMed ID: 35284831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNA Response to Infection of the Insect-Specific Lammi Virus and Hanko Virus in an
    Öhlund P; Hayer J; Hesson JC; Blomström AL
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunofluorescent detection of double-stranded RNA in cells infected with reovirus, infectious pancreatic necrosis virus, and infectious bursal disease virus.
    Macdonald RD
    Can J Microbiol; 1980 Feb; 26(2):256-61. PubMed ID: 6250691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses.
    Weber F; Wagner V; Rasmussen SB; Hartmann R; Paludan SR
    J Virol; 2006 May; 80(10):5059-64. PubMed ID: 16641297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of virus infection in plants and differentiation between coexisting viruses by monoclonal antibodies to double-stranded RNA.
    Lukács N
    J Virol Methods; 1994 May; 47(3):255-72. PubMed ID: 8071415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-wide quantification of double-stranded RNAs in live mouse tissues by dsRIP-Seq.
    Gao Y; Chen S; Halene S; Tebaldi T
    STAR Protoc; 2021 Mar; 2(1):100366. PubMed ID: 33778776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mitochondrial double-stranded RNAs in human cells.
    Kim S; Yoon J; Lee K; Kim Y
    STAR Protoc; 2023 Mar; 4(1):102007. PubMed ID: 36853732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal Imaging of Double-Stranded RNA and Pattern Recognition Receptors in Negative-Sense RNA Virus Infection.
    Mateer E; Paessler S; Huang C
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30741258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Detection of Double-Stranded RNA by dRBFC Assay.
    Cheng X; Luan Y; Wang A
    Methods Mol Biol; 2022; 2400():1-9. PubMed ID: 34905185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect antiviral innate immunity: pathways, effectors, and connections.
    Kingsolver MB; Huang Z; Hardy RW
    J Mol Biol; 2013 Dec; 425(24):4921-36. PubMed ID: 24120681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplastomic Tomato Plants Expressing Insect-Specific Double-Stranded RNAs: A Protocol Based on Biolistic Transformation.
    Kaplanoglu E; Kolotilin I; Menassa R; Donly C
    Methods Mol Biol; 2022; 2360():235-252. PubMed ID: 34495519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts.
    Schönborn J; Oberstrass J; Breyel E; Tittgen J; Schumacher J; Lukacs N
    Nucleic Acids Res; 1991 Jun; 19(11):2993-3000. PubMed ID: 2057357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects.
    Santos D; Mingels L; Vogel E; Wang L; Christiaens O; Cappelle K; Wynant N; Gansemans Y; Van Nieuwerburgh F; Smagghe G; Swevers L; Vanden Broeck J
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31405199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide CRISPR-Cas9 Screen Reveals the Importance of the Heparan Sulfate Pathway and the Conserved Oligomeric Golgi Complex for Synthetic Double-Stranded RNA Uptake and Sindbis Virus Infection.
    Petitjean O; Girardi E; Ngondo RP; Lupashin V; Pfeffer S
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33177215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of Double-Stranded RNA Colocalizing With Pattern Recognition Receptors in Arenavirus Infected Cells.
    Mateer EJ; Paessler S; Huang C
    Front Cell Infect Microbiol; 2018; 8():251. PubMed ID: 30087859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing Virus-Derived dsRNA Using Antibody-Independent and -Dependent Methods.
    Poynter SJ; DeWitte-Orr SJ
    Methods Mol Biol; 2017; 1656():103-118. PubMed ID: 28808964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants.
    Liu R; Moss B
    J Virol; 2016 Sep; 90(17):7864-79. PubMed ID: 27334583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template role of double-stranded RNA in tombusvirus replication.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2014 May; 88(10):5638-51. PubMed ID: 24600009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.