BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36853796)

  • 1. An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears.
    Lewis JE; Shebelut CW; Drumheller BR; Zhang X; Shanmugam N; Attieh M; Horwath MC; Khanna A; Smith GH; Gutman DA; Aljudi A; Cooper LAD; Jaye DL
    Mod Pathol; 2023 Feb; 36(2):100003. PubMed ID: 36853796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells.
    Chandradevan R; Aljudi AA; Drumheller BR; Kunananthaseelan N; Amgad M; Gutman DA; Cooper LAD; Jaye DL
    Lab Invest; 2020 Jan; 100(1):98-109. PubMed ID: 31570774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence.
    Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M
    Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks.
    Wang X; Wang Y; Qi C; Qiao S; Yang S; Wang R; Jin H; Zhang J
    Technol Cancer Res Treat; 2023; 22():15330338221150069. PubMed ID: 36700246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Only prolonged time from abstraction found to affect viable nucleated cell concentrations in vertebral body bone marrow aspirate.
    Badrinath R; Bohl DD; Hustedt JW; Webb ML; Grauer JN
    Spine J; 2014 Jun; 14(6):990-5. PubMed ID: 24184640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Health technology assessment report: Computer-assisted Pap test for cervical cancer screening].
    Della Palma P; Moresco L; Giorgi Rossi P
    Epidemiol Prev; 2012; 36(5 Suppl 3):e1-43. PubMed ID: 23139174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for bone marrow cell detection and classification on whole-slide images.
    Wang CW; Huang SC; Lee YC; Shen YJ; Meng SI; Gaol JL
    Med Image Anal; 2022 Jan; 75():102270. PubMed ID: 34710655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of bone marrow cellularity using digital image nucleated cell counts in patients receiving chemotherapy.
    Kim Y; Kim M; Kim Y; Han JH; Han K
    Int J Lab Hematol; 2014 Oct; 36(5):548-54. PubMed ID: 24612511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDC-NET: a cell detection and confirmation network of bone marrow aspirate images for the aided diagnosis of AML.
    Su J; Liu Y; Zhang J; Han J; Song J
    Med Biol Eng Comput; 2024 Feb; 62(2):575-589. PubMed ID: 37953336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells.
    Baranova K; Tran C; Plantinga P; Sangle N
    J Clin Pathol; 2021 Jul; 74(7):462-468. PubMed ID: 33952591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.
    Choi JW; Ku Y; Yoo BW; Kim JA; Lee DS; Chai YJ; Kong HJ; Kim HC
    PLoS One; 2017; 12(12):e0189259. PubMed ID: 29228051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal Humerus and Ilium Are Reliable Sources of Bone Marrow Aspirates for Biologic Augmentation During Arthroscopic Surgery.
    Otto A; Muench LN; Kia C; Baldino JB; Mehl J; Dyrna F; Voss A; McCarthy MB; Nazal MR; Martin SD; Mazzocca AD
    Arthroscopy; 2020 Sep; 36(9):2403-2411. PubMed ID: 32554079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital assessment of peripheral blood and bone marrow aspirate smears.
    Lewis JE; Pozdnyakova O
    Int J Lab Hematol; 2023 Jun; 45 Suppl 2():50-58. PubMed ID: 37211430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carcinoma.
    Feng M; Deng Y; Yang L; Jing Q; Zhang Z; Xu L; Wei X; Zhou Y; Wu D; Xiang F; Wang Y; Bao J; Bu H
    Diagn Pathol; 2020 May; 15(1):65. PubMed ID: 32471471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated hematologic analysis of bone marrow aspirate samples from healthy Beagle dogs.
    Tan E; Abrams-Ogg AC; Defarges A; Bienzle D
    Vet Clin Pathol; 2014 Sep; 43(3):342-51. PubMed ID: 25135758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenging task of enumerating blasts in the bone marrow.
    Hodes A; Calvo KR; Dulau A; Maric I; Sun J; Braylan R
    Semin Hematol; 2019 Jan; 56(1):58-64. PubMed ID: 30573046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning predicts therapy-relevant genetics in acute myeloid leukemia from Pappenheim-stained bone marrow smears.
    Kockwelp J; Thiele S; Bartsch J; Haalck L; Gromoll J; Schlatt S; Exeler R; Bleckmann A; Lenz G; Wolf S; Steffen B; Berdel WE; Schliemann C; Risse B; Angenendt L
    Blood Adv; 2024 Jan; 8(1):70-79. PubMed ID: 37967385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
    Hussain E; Mahanta LB; Das CR; Choudhury M; Chowdhury M
    Artif Intell Med; 2020 Jul; 107():101897. PubMed ID: 32828445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.