BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36853991)

  • 1. High-Performance Shortwave Infrared Detector Based on Multilayer Carbon Nanotube Films.
    Cai X; Hong D; Wu W; Han B; Liang X; Wang S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13508-13516. PubMed ID: 36853991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significantly enhanced photoresponse of carbon nanotube films modified with cesium tungsten bronze nanoclusters in the visible to short-wave infrared range.
    Chen H; Zhu J; Cao Y; Wei J; Lv B; Hu Q; Sun JL
    RSC Adv; 2021 Dec; 11(63):39646-39656. PubMed ID: 35494114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films.
    Liu Y; Yin J; Wang P; Hu Q; Wang Y; Xie Y; Zhao Z; Dong Z; Zhu JL; Chu W; Yang N; Wei J; Ma W; Sun JL
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36304-36311. PubMed ID: 30264557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.
    Liu Y; Wei N; Zhao Q; Zhang D; Wang S; Peng LM
    Nanoscale; 2015 Apr; 7(15):6805-12. PubMed ID: 25807291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Speed Carbon Nanotube Photodetectors for 2 μm Communications.
    Wu W; Ma H; Cai X; Han B; Li Y; Xu K; Lin H; Zhang F; Chen Z; Zhang Z; Peng LM; Wang S
    ACS Nano; 2023 Aug; 17(15):15155-15164. PubMed ID: 37470321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InAs nanowire arrays for room-temperature ultra-broadband infrared photodetection.
    Li Z; Azimi Z; Li Z; Yu Y; Huang L; Jin W; Tan HH; Jagadish C; Wong-Leung J; Fu L
    Nanoscale; 2023 Jun; 15(23):10033-10041. PubMed ID: 37248736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaporated Se
    Tan C; Amani M; Zhao C; Hettick M; Song X; Lien DH; Li H; Yeh M; Shrestha VR; Crozier KB; Scott MC; Javey A
    Adv Mater; 2020 Sep; 32(38):e2001329. PubMed ID: 32776369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance and Flexible Shortwave Infrared Photodetectors Using Composites of Rare Earth-Doped Nanoparticles.
    Zhao X; Song L; Zhao R; Tan MC
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2344-2351. PubMed ID: 30574785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcavity-Integrated Carbon Nanotube Photodetectors.
    Liang S; Ma Z; Wu G; Wei N; Huang L; Huang H; Liu H; Wang S; Peng LM
    ACS Nano; 2016 Jul; 10(7):6963-71. PubMed ID: 27379375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Solution-Processed NiOx:PbI2 Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors.
    Zhu HL; Cheng J; Zhang D; Liang C; Reckmeier CJ; Huang H; Rogach AL; Choy WC
    ACS Nano; 2016 Jul; 10(7):6808-15. PubMed ID: 27340899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity.
    Zhu T; Shen L; Zhang D; Zheng J; Gong X
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18744-18750. PubMed ID: 35420415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene photodetectors with ultra-broadband and high responsivity at room temperature.
    Liu CH; Chang YC; Norris TB; Zhong Z
    Nat Nanotechnol; 2014 Apr; 9(4):273-8. PubMed ID: 24633521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin High-Quality SnTe Nanoplates for Fabricating Flexible Near-Infrared Photodetectors.
    Liu J; Li X; Wang H; Yuan G; Suvorova A; Gain S; Ren Y; Lei W
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31810-31822. PubMed ID: 32585086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy.
    Zhong Z; Li K; Zhang J; Ying L; Xie R; Yu G; Huang F; Cao Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14208-14214. PubMed ID: 30908001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors.
    Wu Z; Zhai Y; Kim H; Azoulay JD; Ng TN
    Acc Chem Res; 2018 Dec; 51(12):3144-3153. PubMed ID: 30520307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors.
    Salvato M; Scagliotti M; De Crescenzi M; Crivellari M; Prosposito P; Cacciotti I; Castrucci P
    Nanotechnology; 2017 Oct; 28(43):435201. PubMed ID: 28829338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Organic Photodetectors with Spectral Response over 1200 nm Adopting a Thieno[3,4-
    Zhang H; Mao R; Yuan L; Wang Y; Liu W; Wang J; Tai H; Jiang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9088-9097. PubMed ID: 38319245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Detectivity Graphene-Silicon Heterojunction Photodetector.
    Li X; Zhu M; Du M; Lv Z; Zhang L; Li Y; Yang Y; Yang T; Li X; Wang K; Zhu H; Fang Y
    Small; 2016 Feb; 12(5):595-601. PubMed ID: 26643577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance broadband heterojunction photodetectors based on multilayered PtSe
    Xie C; Zeng L; Zhang Z; Tsang YH; Luo L; Lee JH
    Nanoscale; 2018 Aug; 10(32):15285-15293. PubMed ID: 30067253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.