BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 36854476)

  • 21. Deep Single-Cell-Type Proteome Profiling of Mouse Brain by Nonsurgical AAV-Mediated Proximity Labeling.
    Sun X; Sun H; Han X; Chen PC; Jiao Y; Wu Z; Zhang X; Wang Z; Niu M; Yu K; Liu D; Dey KK; Mancieri A; Fu Y; Cho JH; Li Y; Poudel S; Branon TC; Ting AY; Peng J
    Anal Chem; 2022 Apr; 94(13):5325-5334. PubMed ID: 35315655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AirID-Based Proximity Labeling for Protein-Protein Interaction in Plants.
    Zada A; Khan I; Zhang M; Cheng Y; Hu X
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.
    Nishino K; Yoshikawa H; Motani K; Kosako H
    J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotin-Based Proximity Labeling of Protein Complexes in Planta.
    Khan M; Subramaniam R; Desveaux D
    Methods Mol Biol; 2021; 2200():425-440. PubMed ID: 33175391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotinylation-based proximity labelling proteomics: basics, applications and technical considerations.
    Niinae T; Ishihama Y; Imami K
    J Biochem; 2021 Dec; 170(5):569-576. PubMed ID: 34752609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites.
    Shin S; Lee SY; Kang MG; Jang DG; Kim J; Rhee HW; Kim JS
    Commun Biol; 2024 May; 7(1):554. PubMed ID: 38724559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling Mouse Brain Single-Cell-Type Proteomes Via Adeno-Associated Virus-Mediated Proximity Labeling and Mass Spectrometry.
    Shrestha HK; Sun H; Wang J; Peng J
    Methods Mol Biol; 2024; 2817():115-132. PubMed ID: 38907151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic navigation using proximity-labeling.
    Gentzel M; Pardo M; Subramaniam S; Stewart AF; Choudhary JS
    Methods; 2019 Jul; 164-165():67-72. PubMed ID: 30953756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying Protein-Protein Interactions by Proximity Biotinylation with AirID and splitAirID.
    Schaack GA; Sullivan OM; Mehle A
    Curr Protoc; 2023 Mar; 3(3):e702. PubMed ID: 36939277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proximity-dependent biotin labeling in testicular germ cells identified TESMIN-associated proteins.
    Oura S; Ninomiya A; Sugihara F; Matzuk MM; Ikawa M
    Sci Rep; 2022 Dec; 12(1):22198. PubMed ID: 36564444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tyrosinase-Based Proximity Labeling in Living Cells and
    Zhu H; Oh JH; Matsuda Y; Mino T; Ishikawa M; Nakamura H; Tsujikawa M; Nonaka H; Hamachi I
    J Am Chem Soc; 2024 Mar; 146(11):7515-7523. PubMed ID: 38445591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring Options for Proximity-Dependent Biotinylation Experiments: Comparative Analysis of Labeling Enzymes and Affinity Purification Resins.
    Schreiber KJ; Kadijk E; Youn JY
    J Proteome Res; 2024 Apr; 23(4):1531-1543. PubMed ID: 38507741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection.
    Lim KH; Huang H; Pralle A; Park S
    Biotechnol Bioeng; 2013 Jan; 110(1):57-67. PubMed ID: 22806584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo biotinylation of bacterial magnetic particles by a truncated form of Escherichia coli biotin ligase and biotin acceptor peptide.
    Maeda Y; Yoshino T; Matsunaga T
    Appl Environ Microbiol; 2010 Sep; 76(17):5785-90. PubMed ID: 20622127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo interactome profiling by enzyme-catalyzed proximity labeling.
    Xu Y; Fan X; Hu Y
    Cell Biosci; 2021 Jan; 11(1):27. PubMed ID: 33514425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defining Proximity Proteome of Histone Modifications by Antibody-mediated Protein A-APEX2 Labeling.
    Li X; Zhou J; Zhao W; Wen Q; Wang W; Peng H; Gao Y; Bouchonville KJ; Offer SM; Chan K; Wang Z; Li N; Gan H
    Genomics Proteomics Bioinformatics; 2022 Feb; 20(1):87-100. PubMed ID: 34555496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of TurboID-dependent biotinylation intensity in proximity ligation screens.
    Garloff V; Krüger T; Brakhage A; Rubio I
    J Proteomics; 2023 May; 279():104886. PubMed ID: 36966971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches.
    Samavarchi-Tehrani P; Samson R; Gingras AC
    Mol Cell Proteomics; 2020 May; 19(5):757-773. PubMed ID: 32127388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing protein trafficking by proximity labeling-based proteomics.
    Wang Y; Qin W
    Bioorg Chem; 2024 Feb; 143():107041. PubMed ID: 38134520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID.
    Shioya R; Yamada K; Kido K; Takahashi H; Nozawa A; Kosako H; Sawasaki T
    Biochem Biophys Res Commun; 2022 Feb; 592():54-59. PubMed ID: 35030423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.