These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36854556)

  • 1. [Research on performance optimization method of human-machine physical interaction system considering exoskeleton wearing comfort].
    Qi W; Yang Y; Zhou Z; Gong J; Chen P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Feb; 40(1):118-124. PubMed ID: 36854556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comfort optimization of a new type of foot mechanism for lower extremity exoskeleton].
    Luan Y; Zhang J; Qi K; Yang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):324-333. PubMed ID: 32329286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of a Passive Knee Exoskeleton for Vertical Jump Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2859-2868. PubMed ID: 33226951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Evaluation of a Knee Exoskeleton Misalignment Compensation Mechanism Using a Robotic Dummy Leg.
    Massardi S; Rodriguez-Cianca D; Cenciarini M; Costa DC; Font-Llagunes JM; Moreno JC; Lancini M; Torricelli D
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction force modeling and analysis of the human-machine kinematic chain based on the human-machine deviation.
    Zhou X; Duan Z
    Sci Rep; 2023 Oct; 13(1):17393. PubMed ID: 37833378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated evaluation approach of wearable lower limb exoskeletons for human performance augmentation.
    Zhang X; Chen X; Huo B; Liu C; Zhu X; Zu Y; Wang X; Chen X; Sun Q
    Sci Rep; 2023 Mar; 13(1):4251. PubMed ID: 36918651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Design and support performance evaluation of medical multi-position auxiliary support exoskeleton mechanism].
    Qi K; Yin Z; Zhang J; Song J; Qiao G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):295-303. PubMed ID: 38686410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rethinking Exoskeleton Simulation-Based Design: The Effect of Using Different Cost Functions.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2153-2164. PubMed ID: 38833397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of a Passive Exoskeleton on Human Thermal Responses in Temperate and Cold Environments.
    Liu Y; Li X; Lai J; Zhu A; Zhang X; Zheng Z; Zhu H; Shi Y; Wang L; Chen Z
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33917655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Systematic Review on Rigid Exoskeleton Robot Design for Wearing Comfort: Joint Self-Alignment, Attachment Interface, and Structure Customization.
    Chen L; Zhou D; Leng Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3815-3827. PubMed ID: 39401109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.