BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36854676)

  • 1. Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat.
    Zhao W; Johnston KG; Ren H; Xu X; Nie Q
    Nat Commun; 2023 Feb; 14(1):1128. PubMed ID: 36854676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat.
    Zhao W; Johnston KG; Ren H; Xu X; Nie Q
    bioRxiv; 2023 Jan; ():. PubMed ID: 36712056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cell-cell communication in autistic brains with single-cell transcriptomes.
    Astorkia M; Lachman HM; Zheng D
    J Neurodev Disord; 2022 May; 14(1):29. PubMed ID: 35501678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
    Efremova M; Vento-Tormo M; Teichmann SA; Vento-Tormo R
    Nat Protoc; 2020 Apr; 15(4):1484-1506. PubMed ID: 32103204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly defined and spatially resolved cell atlas of the whole mouse brain.
    Zhang M; Pan X; Jung W; Halpern AR; Eichhorn SW; Lei Z; Cohen L; Smith KA; Tasic B; Yao Z; Zeng H; Zhuang X
    Nature; 2023 Dec; 624(7991):343-354. PubMed ID: 38092912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development.
    Li D; Xu J; Yang MQ
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring Cell-Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model.
    Wu D; Gaskins JT; Sekula M; Datta S
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data.
    Morabito S; Reese F; Rahimzadeh N; Miyoshi E; Swarup V
    Cell Rep Methods; 2023 Jun; 3(6):100498. PubMed ID: 37426759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses.
    Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J
    Nat Methods; 2024 Mar; 21(3):444-454. PubMed ID: 38347138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening cell-cell communication in spatial transcriptomics via collective optimal transport.
    Cang Z; Zhao Y; Almet AA; Stabell A; Ramos R; Plikus MV; Atwood SX; Nie Q
    Nat Methods; 2023 Feb; 20(2):218-228. PubMed ID: 36690742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of Ligand-Receptor Pairs from Single-Cell Transcriptomics Data.
    Efremova M; Vento-Tormo R
    Methods Mol Biol; 2021; 2346():1-10. PubMed ID: 33625677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data.
    Jin S; Ramos R
    Biochem Soc Trans; 2022 Feb; 50(1):297-308. PubMed ID: 35191953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICELLNET v2: a versatile method for cell-cell communication analysis from human transcriptomic data.
    Massenet-Regad L; Soumelis V
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38490248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference and analysis of cell-cell communication using CellChat.
    Jin S; Guerrero-Juarez CF; Zhang L; Chang I; Ramos R; Kuan CH; Myung P; Plikus MV; Nie Q
    Nat Commun; 2021 Feb; 12(1):1088. PubMed ID: 33597522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of changes in inter-cellular communications during Alzheimer's Disease pathogenesis reveals conserved changes in glutamatergic transmission in mice and humans.
    Bartas K; Hui M; Zhao W; Macchia D; Nie Q; Beier KT
    bioRxiv; 2024 May; ():. PubMed ID: 38746369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Type-Specific Analysis of Molecular Pathology in Autism Identifies Common Genes and Pathways Affected Across Neocortical Regions.
    Velmeshev D; Magistri M; Mazza EMC; Lally P; Khoury N; D'Elia ER; Bicciato S; Faghihi MA
    Mol Neurobiol; 2020 May; 57(5):2279-2289. PubMed ID: 32008165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Transcriptomic Analysis of Sex Differences in Autism Spectrum Disorder: Current Insights and Future Directions.
    Kissel LT; Werling DM
    Biol Psychiatry; 2022 Jan; 91(1):53-60. PubMed ID: 33551190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation.
    Shang Z; Chen D; Wang Q; Wang S; Deng Q; Wu L; Liu C; Ding X; Wang S; Zhong J; Zhang D; Cai X; Zhu S; Yang H; Liu L; Fink JL; Chen F; Liu X; Gao Z; Xu X
    Gigascience; 2018 Nov; 7(11):. PubMed ID: 30239706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell clustering for spatial transcriptomics data with graph neural networks.
    Li J; Chen S; Pan X; Yuan Y; Shen HB
    Nat Comput Sci; 2022 Jun; 2(6):399-408. PubMed ID: 38177586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting cell-to-cell communication networks using NATMI.
    Hou R; Denisenko E; Ong HT; Ramilowski JA; Forrest ARR
    Nat Commun; 2020 Oct; 11(1):5011. PubMed ID: 33024107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.