These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36854853)

  • 1. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds.
    Hahn V
    World J Microbiol Biotechnol; 2023 Mar; 39(4):107. PubMed ID: 36854853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-mediated synthesis of bioactive natural products and their analogues.
    Cardullo N; Muccilli V; Tringali C
    RSC Chem Biol; 2022 Jun; 3(6):614-647. PubMed ID: 35755186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials.
    Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):605-24. PubMed ID: 19183983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase catalysis for the synthesis of bioactive compounds.
    Kudanga T; Nemadziva B; Le Roes-Hill M
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):13-33. PubMed ID: 27872999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical and Pharmaceutical-Related Applications of Laccases.
    Mohit E; Tabarzad M; Faramarzi MA
    Curr Protein Pept Sci; 2020; 21(1):78-98. PubMed ID: 31660814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential applications of laccase-mediated coupling and grafting reactions: a review.
    Kudanga T; Nyanhongo GS; Guebitz GM; Burton S
    Enzyme Microb Technol; 2011 Mar; 48(3):195-208. PubMed ID: 22112901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols.
    Hahn V; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1609-20. PubMed ID: 23715853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions.
    Hahn V; Mikolasch A; Wende K; Bartrow H; Lindequist U; Schauer F
    Biotechnol Appl Biochem; 2009 Nov; 54(4):187-95. PubMed ID: 19788410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications.
    Jeon JR; Baldrian P; Murugesan K; Chang YS
    Microb Biotechnol; 2012 May; 5(3):318-32. PubMed ID: 21791030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and Applications of fungal laccases for organic synthesis.
    Kunamneni A; Camarero S; García-Burgos C; Plou FJ; Ballesteros A; Alcalde M
    Microb Cell Fact; 2008 Nov; 7():32. PubMed ID: 19019256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.
    Manda K; Gördes D; Mikolasch A; Hammer E; Schmidt E; Thurow K; Schauer F
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):407-16. PubMed ID: 17576553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine.
    Mikolasch A; Lindequist U; Witt S; Hahn V
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the laccase-toolbox: a laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity.
    Ricklefs E; Winkler N; Koschorreck K; Urlacher VB
    J Biotechnol; 2014 Dec; 191():46-53. PubMed ID: 24910971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccases: Versatile Biocatalysts for the Synthesis of Heterocyclic Cores.
    Sousa AC; Martins LO; Robalo MP
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity.
    Ihssen J; Schubert M; Thöny-Meyer L; Richter M
    PLoS One; 2014; 9(3):e89924. PubMed ID: 24594755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Bioactive Properties of Novel Textile Dyes Synthesised by Fungal Laccase.
    Polak J; Wlizło K; Pogni R; Petricci E; Grąz M; Szałapata K; Osińska-Jaroszuk M; Kapral-Piotrowska J; Pawlikowska-Pawlęga B; Jarosz-Wilkołazka A
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32192097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can laccases catalyze bond cleavage in lignin?
    Munk L; Sitarz AK; Kalyani DC; Mikkelsen JD; Meyer AS
    Biotechnol Adv; 2015; 33(1):13-24. PubMed ID: 25560931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches.
    Weirick T; Sahu SS; Mahalingam R; Kaundal R
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S15. PubMed ID: 25350584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.