BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36855050)

  • 1. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins.
    Kahle M; Appelgren S; Elofsson A; Carroni M; Ädelroth P
    BMC Biol; 2023 Feb; 21(1):47. PubMed ID: 36855050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The insertion of the non-heme Fe
    Kahle M; Ter Beek J; Hosler JP; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1051-1058. PubMed ID: 29874552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Evolution of the MoxR ATPases.
    Bhandari V; Van Ommen DAJ; Wong KS; Houry WA
    J Phys Chem A; 2022 Jul; ():. PubMed ID: 35852937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoxR AAA+ ATPases: a novel family of molecular chaperones?
    Snider J; Houry WA
    J Struct Biol; 2006 Oct; 156(1):200-9. PubMed ID: 16677824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.
    de Boer AP; van der Oost J; Reijnders WN; Westerhoff HV; Stouthamer AH; van Spanning RJ
    Eur J Biochem; 1996 Dec; 242(3):592-600. PubMed ID: 9022686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel structural and functional insights into the MoxR family of AAA+ ATPases.
    Wong KS; Houry WA
    J Struct Biol; 2012 Aug; 179(2):211-21. PubMed ID: 22491058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase.
    Tsai YC; Ye F; Liew L; Liu D; Bhushan S; Gao YG; Mueller-Cajar O
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):381-387. PubMed ID: 31848241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth.
    Van Spanning RJ; Wansell CW; De Boer T; Hazelaar MJ; Anazawa H; Harms N; Oltmann LF; Stouthamer AH
    J Bacteriol; 1991 Nov; 173(21):6948-61. PubMed ID: 1657871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the mechanism of nitric oxide reductase from a Fe
    Kahle M; Blomberg MRA; Jareck S; Ädelroth P
    FEBS Lett; 2019 Jun; 593(12):1351-1359. PubMed ID: 31077353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans.
    Albertsson I; Sjöholm J; Ter Beek J; Watmough NJ; Widengren J; Ädelroth P
    Sci Rep; 2019 Nov; 9(1):17234. PubMed ID: 31754148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Proton Donor in the NO Reductase from Paracoccus denitrificans.
    ter Beek J; Krause N; Ädelroth P
    PLoS One; 2016; 11(3):e0152745. PubMed ID: 27030968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.
    Ter Beek J; Krause N; Reimann J; Lachmann P; Ädelroth P
    J Biol Chem; 2013 Oct; 288(42):30626-30635. PubMed ID: 24014024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex.
    Wong KS; Bhandari V; Janga SC; Houry WA
    J Mol Biol; 2017 Jan; 429(2):324-344. PubMed ID: 27979649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses.
    Yamagiwa R; Kurahashi T; Takeda M; Adachi M; Nakamura H; Arai H; Shiro Y; Sawai H; Tosha T
    Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):333-341. PubMed ID: 29499184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes.
    Ter Beek J; Kahle M; Ädelroth P
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1951-1961. PubMed ID: 28668220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic DNA cloning of the region encoding nitric oxide reductase in Paracoccus halodenitrificans and a structure model relevant to cytochrome oxidase.
    Sakurai N; Sakurai T
    Biochem Biophys Res Commun; 1998 Feb; 243(2):400-6. PubMed ID: 9480821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes.
    Sato N; Ishii S; Sugimoto H; Hino T; Fukumori Y; Sako Y; Shiro Y; Tosha T
    Proteins; 2014 Jul; 82(7):1258-71. PubMed ID: 24338896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans.
    Stouthamer AH
    J Bioenerg Biomembr; 1991 Apr; 23(2):163-85. PubMed ID: 2050653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic control of nitric oxide (NO) at nanomolar concentrations in denitrifying bacteria - modelling and experimental determination of NO reductase kinetics in vivo in Paracoccus denitrificans.
    Hassan J; Bergaust LL; Molstad L; de Vries S; Bakken LR
    Environ Microbiol; 2016 Sep; 18(9):2964-78. PubMed ID: 26568410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.