These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36855050)
21. Architecture and characterization of a thermostable MoxR family AAA(+) ATPase from Thermococcus kodakarensis KOD1. Pham BP; Lee S; Jia B; Kwak JM; Cheong GW Extremophiles; 2014 May; 18(3):537-44. PubMed ID: 24638259 [TBL] [Abstract][Full Text] [Related]
22. Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase. Snider J; Gutsche I; Lin M; Baby S; Cox B; Butland G; Greenblatt J; Emili A; Houry WA J Biol Chem; 2006 Jan; 281(3):1532-46. PubMed ID: 16301313 [TBL] [Abstract][Full Text] [Related]
23. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Carr GJ; Page MD; Ferguson SJ Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732 [TBL] [Abstract][Full Text] [Related]
24. The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme. Bhandari V; Reichheld SE; Houliston S; Lemak A; Arrowsmith CH; Sharpe S; Houry WA J Biol Chem; 2023 Oct; 299(10):105199. PubMed ID: 37660904 [TBL] [Abstract][Full Text] [Related]
25. Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen. Salomonsson L; Reimann J; Tosha T; Krause N; Gonska N; Shiro Y; Adelroth P Biochim Biophys Acta; 2012 Oct; 1817(10):1914-20. PubMed ID: 22538294 [TBL] [Abstract][Full Text] [Related]
26. Chaperone role for proteins p618 and p892 in the extracellular tail development of Acidianus two-tailed virus. Scheele U; Erdmann S; Ungewickell EJ; Felisberto-Rodrigues C; Ortiz-Lombardía M; Garrett RA J Virol; 2011 May; 85(10):4812-21. PubMed ID: 21367903 [TBL] [Abstract][Full Text] [Related]
27. Time-resolved resonance Raman and time-resolved step-scan FTIR studies of nitric oxide reductase from Paracoccus denitrificans: comparison of the heme b3-FeB site to that of the heme-CuB in oxidases. Pinakoulaki E; Varotsis C Biochemistry; 2003 Dec; 42(50):14856-61. PubMed ID: 14674760 [TBL] [Abstract][Full Text] [Related]
28. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study. Attia AA; Silaghi-Dumitrescu R J Mol Model; 2015 May; 21(5):130. PubMed ID: 25920393 [TBL] [Abstract][Full Text] [Related]
29. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure. Terasaka E; Okada N; Sato N; Sako Y; Shiro Y; Tosha T Biochim Biophys Acta; 2014 Jul; 1837(7):1019-26. PubMed ID: 24569054 [TBL] [Abstract][Full Text] [Related]
30. The NtrYX Two-Component System of Olaya-Abril A; Luque-Almagro VM; Hidalgo-Carrillo J; Chicano-Gálvez E; Urbano FJ; Moreno-Vivián C; Richardson DJ; Roldán MD Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012437 [TBL] [Abstract][Full Text] [Related]
31. Gene organization for nitric oxide reduction in Alcaligenes faecalis S-6. Kukimoto M; Nishiyama M; Tanokura M; Horinouchi S Biosci Biotechnol Biochem; 2000 Apr; 64(4):852-7. PubMed ID: 10830505 [TBL] [Abstract][Full Text] [Related]
32. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. Yamasaki T; Nakazaki Y; Yoshida M; Watanabe YH FEBS J; 2011 Jul; 278(13):2395-403. PubMed ID: 21554542 [TBL] [Abstract][Full Text] [Related]
33. Interaction of Venturicidin and F Zharova TV; Kozlovsky VS; Grivennikova VG Biochemistry (Mosc); 2022 Aug; 87(8):742-751. PubMed ID: 36171655 [TBL] [Abstract][Full Text] [Related]
34. Evolutionary history and higher order classification of AAA+ ATPases. Iyer LM; Leipe DD; Koonin EV; Aravind L J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234 [TBL] [Abstract][Full Text] [Related]
35. The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria. García-Trejo JJ; Zarco-Zavala M; Mendoza-Hoffmann F; Hernández-Luna E; Ortega R; Mendoza-Hernández G J Biol Chem; 2016 Jan; 291(2):538-46. PubMed ID: 26546676 [TBL] [Abstract][Full Text] [Related]
37. [Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense]. Petrova LP; Varshalomidze OÉ; Shelud'ko AV; Katsy EI Genetika; 2010 Jul; 46(7):904-10. PubMed ID: 20795494 [TBL] [Abstract][Full Text] [Related]
38. Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes. Stouthamer AH Antonie Van Leeuwenhoek; 1992 Jan; 61(1):1-33. PubMed ID: 1575465 [TBL] [Abstract][Full Text] [Related]
39. Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity. El Bakkouri M; Gutsche I; Kanjee U; Zhao B; Yu M; Goret G; Schoehn G; Burmeister WP; Houry WA Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22499-504. PubMed ID: 21148420 [TBL] [Abstract][Full Text] [Related]