These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36855050)
41. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). Sala-Rabanal M; Yurtsever Z; Berry KN; Nichols CG; Brett TJ J Biol Chem; 2017 Jun; 292(22):9164-9174. PubMed ID: 28420732 [TBL] [Abstract][Full Text] [Related]
42. Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans. Morales-Rios E; Watt IN; Zhang Q; Ding S; Fearnley IM; Montgomery MG; Wakelam MJ; Walker JE Open Biol; 2015 Sep; 5(9):150119. PubMed ID: 26423580 [TBL] [Abstract][Full Text] [Related]
43. Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes. Zharova TV; Vinogradov AD J Biol Chem; 2004 Mar; 279(13):12319-24. PubMed ID: 14722115 [TBL] [Abstract][Full Text] [Related]
44. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. Van Spanning RJ; De Boer AP; Reijnders WN; Spiro S; Westerhoff HV; Stouthamer AH; Van der Oost J FEBS Lett; 1995 Feb; 360(2):151-4. PubMed ID: 7875319 [TBL] [Abstract][Full Text] [Related]
45. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Morales-Rios E; Montgomery MG; Leslie AG; Walker JE Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13231-6. PubMed ID: 26460036 [TBL] [Abstract][Full Text] [Related]
46. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. Schumacher J; Joly N; Rappas M; Zhang X; Buck M J Struct Biol; 2006 Oct; 156(1):190-9. PubMed ID: 16531068 [TBL] [Abstract][Full Text] [Related]
47. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase. Pinakoulaki E; Varotsis C J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060 [TBL] [Abstract][Full Text] [Related]
49. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. Dermastia M; Turk T; Hollocher TC J Biol Chem; 1991 Jun; 266(17):10899-905. PubMed ID: 1645715 [TBL] [Abstract][Full Text] [Related]
50. Structure of the soluble domain of cytochrome c(552) from Paracoccus denitrificans in the oxidized and reduced states. Harrenga A; Reincke B; Rüterjans H; Ludwig B; Michel H J Mol Biol; 2000 Jan; 295(3):667-78. PubMed ID: 10623555 [TBL] [Abstract][Full Text] [Related]
51. Deciphering protein-protein interactions during the biogenesis of cytochrome c oxidase from Paracoccus denitrificans. Gurumoorthy P; Ludwig B FEBS J; 2015 Feb; 282(3):537-49. PubMed ID: 25420759 [TBL] [Abstract][Full Text] [Related]
52. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. Dash BP; Alles M; Bundschuh FA; Richter OH; Ludwig B Biochim Biophys Acta; 2015 Feb; 1847(2):202-211. PubMed ID: 25445316 [TBL] [Abstract][Full Text] [Related]
53. AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Kim S; Fei X; Sauer RT; Baker TA Nat Struct Mol Biol; 2022 Nov; 29(11):1068-1079. PubMed ID: 36329286 [TBL] [Abstract][Full Text] [Related]
54. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement. Yamasaki T; Oohata Y; Nakamura T; Watanabe YH J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084 [TBL] [Abstract][Full Text] [Related]
55. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. Fujiwara T; Fukumori Y J Bacteriol; 1996 Apr; 178(7):1866-71. PubMed ID: 8606159 [TBL] [Abstract][Full Text] [Related]
56. Structure of a collagen VI α3 chain VWA domain array: adaptability and functional implications of myopathy causing mutations. Solomon-Degefa H; Gebauer JM; Jeffries CM; Freiburg CD; Meckelburg P; Bird LE; Baumann U; Svergun DI; Owens RJ; Werner JM; Behrmann E; Paulsson M; Wagener R J Biol Chem; 2020 Sep; 295(36):12755-12771. PubMed ID: 32719005 [TBL] [Abstract][Full Text] [Related]
57. Reaction of carbon monoxide with the reduced active site of bacterial nitric oxide reductase. Hendriks JH; Prior L; Baker AR; Thomson AJ; Saraste M; Watmough NJ Biochemistry; 2001 Nov; 40(44):13361-9. PubMed ID: 11683646 [TBL] [Abstract][Full Text] [Related]
58. Mechanism of Vps4 hexamer function revealed by cryo-EM. Su M; Guo EZ; Ding X; Li Y; Tarrasch JT; Brooks CL; Xu Z; Skiniotis G Sci Adv; 2017 Apr; 3(4):e1700325. PubMed ID: 28439563 [TBL] [Abstract][Full Text] [Related]
59. Properties of a soluble domain of subunit C of a bacterial nitric oxide reductase. Oubrie A; Gemeinhardt S; Field S; Marritt S; Thomson AJ; Saraste M; Richardson DJ Biochemistry; 2002 Sep; 41(35):10858-65. PubMed ID: 12196025 [TBL] [Abstract][Full Text] [Related]
60. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies. Grönberg KL; Watmough NJ; Thomson AJ; Richardson DJ; Field SJ J Biol Chem; 2004 Apr; 279(17):17120-5. PubMed ID: 14766741 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]