These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 36855384)
1. Alloyed PdCu Nanoparticles within Siliceous Zeolite Crystals for Catalytic Semihydrogenation. Luo Q; Wang H; Wang L; Xiao FS ACS Mater Au; 2022 May; 2(3):313-320. PubMed ID: 36855384 [TBL] [Abstract][Full Text] [Related]
2. Cu Single-Atom Catalysts for High-Selectivity Electrocatalytic Acetylene Semihydrogenation. Jiang X; Tang L; Dong L; Sheng X; Zhang W; Liu Z; Shen J; Jiang H; Li C Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202307848. PubMed ID: 37378584 [TBL] [Abstract][Full Text] [Related]
3. Improvement of Selectivity in Acetylene Hydrogenation with Comparable Activity over Ordered PdCu Catalysts Induced by Post-treatment. Yang T; Feng Y; Ma R; Li Q; Yan H; Liu Y; He Y; Miller JT; Li D ACS Appl Mater Interfaces; 2021 Jan; 13(1):706-716. PubMed ID: 33356137 [TBL] [Abstract][Full Text] [Related]
4. Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. Fu X; Liu J; Kanchanakungwankul S; Hu X; Yue Q; Truhlar DG; Hupp JT; Kang Y Nano Lett; 2021 Jul; 21(13):5620-5626. PubMed ID: 34170691 [TBL] [Abstract][Full Text] [Related]
5. Electronic Modulation of Pd-Based Bimetallic Catalysts with Sulfur-Doped Carbon Support for Phenylacetylene Semihydrogenation. Wang ZS; Yang CL; Xu SL; Nan H; Shen SC; Liang HW Inorg Chem; 2020 Apr; 59(8):5694-5701. PubMed ID: 32216345 [TBL] [Abstract][Full Text] [Related]
6. Pure Acetylene Semihydrogenation over Ni-Cu Bimetallic Catalysts: Effect of the Cu/Ni Ratio on Catalytic Performance. Zhou S; Kang L; Zhou X; Xu Z; Zhu M Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32168927 [TBL] [Abstract][Full Text] [Related]
7. A General One-Pot Methodology for the Preparation of Mono- and Bimetallic Nanoparticles Supported on Carbon Nanotubes: Application in the Semi-hydrogenation of Alkynes and Acetylene. Lomelí-Rosales DA; Delgado JA; Díaz de Los Bernardos M; Pérez-Rodríguez S; Gual A; Claver C; Godard C Chemistry; 2019 Jun; 25(35):8321-8331. PubMed ID: 31013371 [TBL] [Abstract][Full Text] [Related]
8. A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores. Zhang J; Wang L; Shao Y; Wang Y; Gates BC; Xiao FS Angew Chem Int Ed Engl; 2017 Aug; 56(33):9747-9751. PubMed ID: 28503914 [TBL] [Abstract][Full Text] [Related]
9. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Ma J; Xing F; Nakaya Y; Shimizu KI; Furukawa S Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202200889. PubMed ID: 35470948 [TBL] [Abstract][Full Text] [Related]
10. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene. Huang F; Deng Y; Chen Y; Cai X; Peng M; Jia Z; Ren P; Xiao D; Wen X; Wang N; Liu H; Ma D J Am Chem Soc; 2018 Oct; 140(41):13142-13146. PubMed ID: 30247031 [TBL] [Abstract][Full Text] [Related]
12. Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. Feng H; Ding H; Wang S; Liang Y; Deng Y; Yang Y; Wei M; Zhang X ACS Appl Mater Interfaces; 2022 Jun; 14(22):25288-25296. PubMed ID: 35622997 [TBL] [Abstract][Full Text] [Related]
13. Acetylene-Selective Hydrogenation Catalyzed by Cationic Nickel Confined in Zeolite. Chai Y; Wu G; Liu X; Ren Y; Dai W; Wang C; Xie Z; Guan N; Li L J Am Chem Soc; 2019 Jun; 141(25):9920-9927. PubMed ID: 31149823 [TBL] [Abstract][Full Text] [Related]
14. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. Vito J; Shetty M ACS Appl Mater Interfaces; 2024 Dec; 16(49):67010-67027. PubMed ID: 38079586 [TBL] [Abstract][Full Text] [Related]
15. Selective Hydrogenation of Acetylene to Ethylene Over Nanosized Gold and Palladium Supported Catalysts. Lee G; Jeong WJ; Ahn HG J Nanosci Nanotechnol; 2020 Sep; 20(9):5800-5803. PubMed ID: 32331184 [TBL] [Abstract][Full Text] [Related]
16. Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives. Cao X; Jang BW; Hu J; Wang L; Zhang S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985543 [TBL] [Abstract][Full Text] [Related]
17. Molecule Saturation Boosts Acetylene Semihydrogenation Activity and Selectivity on a Core-Shell Ruthenium@Palladium Catalyst. Zhu C; Xu W; Liu F; Luo J; Lu J; Li WX Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202300110. PubMed ID: 37026370 [TBL] [Abstract][Full Text] [Related]
18. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes. Zhang L; Chen Z; Liu Z; Bu J; Ma W; Yan C; Bai R; Lin J; Zhang Q; Liu J; Wang T; Zhang J Nat Commun; 2021 Nov; 12(1):6574. PubMed ID: 34772929 [TBL] [Abstract][Full Text] [Related]
19. Acetylene Semihydrogenation over Pd-Bi Intermetallic Compounds: A DFT Combined with Microkinetic Modeling Study. Li BB; Ma HY; Wang GC Langmuir; 2024 Sep; 40(36):19043-19050. PubMed ID: 39196898 [TBL] [Abstract][Full Text] [Related]
20. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. Xu J; Huang W; Li R; Li L; Ma J; Qi J; Ma H; Ruan M; Lu L J Colloid Interface Sci; 2024 Feb; 655():584-593. PubMed ID: 37956546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]