These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36855389)

  • 1. Microfluidic Production of Monodisperse Biopolymer Microcapsules for Latent Heat Storage.
    Watanabe T; Sakai Y; Sugimori N; Ikeda T; Monzen M; Ono T
    ACS Mater Au; 2022 May; 2(3):250-259. PubMed ID: 36855389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Fabrication of Polymeric Microcapsules by Ink-Jet Printing of Emulsions.
    Deng R; Wang Y; Yang L; Bain CD
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40652-40661. PubMed ID: 31581770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage.
    Yang L; Dai L; Ye L; Yang R; Lu Y
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation.
    Tang S; Yourdkhani M; Possanza Casey CM; Sottos NR; White SR; Moore JS
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20115-20123. PubMed ID: 28544851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic fabrication of monodisperse polylactide microcapsules with tunable structures through rapid precipitation.
    Watanabe T; Kimura Y; Ono T
    Langmuir; 2013 Nov; 29(46):14082-8. PubMed ID: 24164350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties.
    Zhang S; Chen Y; Campagne C; Salaün F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32403411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Latent Heat Phase-Change Microcapsules for Temperature Regulation.
    Li C; Fu J; Huang F; Zhu Z; Si T
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30383-30393. PubMed ID: 37327317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional Microcapsules with n-Octadecane/Thyme Oil Core and Polyurea Shell for High-Efficiency Thermal Energy Storage and Antibiosis.
    Wang X; Li C; Wang M; Zhao T; Li W
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32998274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microencapsulated phase change material with chitin nanocrystals stabilized Pickering emulsion for thermal energy storage.
    Tan C; He Y; Luo B; Liu M
    Int J Biol Macromol; 2023 Jun; 240():124374. PubMed ID: 37028616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic fabrication of monodisperse microcapsules with gas cores.
    Yang SH; Song WL; Fan LL; Deng CF; Xie R; Wang W; Liu Z; Pan DW; Ju XJ; Chu LY
    Lab Chip; 2024 Jul; 24(14):3556-3567. PubMed ID: 38949110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.
    Yoo Y; Martinez C; Youngblood JP
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31763-31776. PubMed ID: 28787125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do encapsulated heat storage materials really retain their original thermal properties?
    Chaiyasat P; Noppalit S; Okubo M; Chaiyasat A
    Phys Chem Chem Phys; 2015 Jan; 17(2):1053-9. PubMed ID: 25412246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform titanium dioxide (TiO(2)) microcapsules prepared by glass membrane emulsification with subsequent solvent evaporation.
    Supsakulchai A; Ma GH; Nagai M; Omi S
    J Microencapsul; 2002; 19(4):425-49. PubMed ID: 12396381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Characterization of Pendimethalin Microcapsules Based on Microfluidic Technology.
    Qin Y; Lu X; Que H; Wang D; He T; Liang D; Liu X; Chen J; Ding C; Xiu P; Xu C; Gu X
    ACS Omega; 2021 Dec; 6(49):34160-34172. PubMed ID: 34926964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-assisted Formation of Highly Monodisperse and Mesoporous Silica Soft Microcapsules.
    Bchellaoui N; Hayat Z; Mami M; Dorbez-Sridi R; El Abed AI
    Sci Rep; 2017 Nov; 7(1):16326. PubMed ID: 29180632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.