BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36855583)

  • 1. Stimuli-Induced Architectural Transition as a Tool for Controlling the Enzymatic Degradability of Polymeric Micelles.
    Slor G; Tevet S; Amir RJ
    ACS Polym Au; 2022 Oct; 2(5):380-386. PubMed ID: 36855583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Dimerization of Polymeric Amphiphiles Acts as a Molecular Switch of Enzymatic Degradability.
    Rosenbaum I; Avinery R; Harnoy AJ; Slor G; Tirosh E; Hananel U; Beck R; Amir RJ
    Biomacromolecules; 2017 Oct; 18(10):3457-3468. PubMed ID: 28858524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Judging Enzyme-Responsive Micelles by Their Covers: Direct Comparison of Dendritic Amphiphiles with Different Hydrophilic Blocks.
    Slor G; Olea AR; Pujals S; Tigrine A; De La Rosa VR; Hoogenboom R; Albertazzi L; Amir RJ
    Biomacromolecules; 2021 Mar; 22(3):1197-1210. PubMed ID: 33512161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles.
    Segal M; Ozery L; Slor G; Wagle SS; Ehm T; Beck R; Amir RJ
    Biomacromolecules; 2020 Oct; 21(10):4076-4086. PubMed ID: 32833437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using High Molecular Precision to Study Enzymatically Induced Disassembly of Polymeric Nanocarriers: Direct Enzymatic Activation or Equilibrium-Based Degradation?
    Slor G; Amir RJ
    Macromolecules; 2021 Feb; 54(4):1577-1588. PubMed ID: 33642615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.
    Rosenbaum I; Harnoy AJ; Tirosh E; Buzhor M; Segal M; Frid L; Shaharabani R; Avinery R; Beck R; Amir RJ
    J Am Chem Soc; 2015 Feb; 137(6):2276-84. PubMed ID: 25607219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles.
    Harnoy AJ; Buzhor M; Tirosh E; Shaharabani R; Beck R; Amir RJ
    Biomacromolecules; 2017 Apr; 18(4):1218-1228. PubMed ID: 28267318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers.
    Harnoy AJ; Rosenbaum I; Tirosh E; Ebenstein Y; Shaharabani R; Beck R; Amir RJ
    J Am Chem Soc; 2014 May; 136(21):7531-4. PubMed ID: 24568366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture-Based Programming of Polymeric Micelles to Undergo Sequential Mesophase Transitions.
    Rathee P; Edelstein-Pardo N; Netti F; Adler-Abramovich L; Sitt A; Amir RJ
    ACS Macro Lett; 2023 Jun; 12(6):814-820. PubMed ID: 37272912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of photoisomerization on the enzymatic hydrolysis of polymeric micelles bearing photo-responsive azobenzene groups at their cores.
    Harnoy AJ; Slor G; Tirosh E; Amir RJ
    Org Biomol Chem; 2016 Jun; 14(24):5813-9. PubMed ID: 27093537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates.
    Slor G; Papo N; Hananel U; Amir RJ
    Chem Commun (Camb); 2018 Jun; 54(50):6875-6878. PubMed ID: 29774332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-Mediated Polymeric Micelle Drug Delivery.
    Xia H; Zhao Y; Tong R
    Adv Exp Med Biol; 2016; 880():365-84. PubMed ID: 26486348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Precision and Enzymatic Degradation: From Readily to Undegradable Polymeric Micelles by Minor Structural Changes.
    Segal M; Avinery R; Buzhor M; Shaharabani R; Harnoy AJ; Tirosh E; Beck R; Amir RJ
    J Am Chem Soc; 2017 Jan; 139(2):803-810. PubMed ID: 27990807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles.
    Li Y; Qian Y; Liu T; Zhang G; Liu S
    Biomacromolecules; 2012 Nov; 13(11):3877-86. PubMed ID: 23013152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascade Mesophase Transitions of Multi-enzyme Responsive Polymeric Formulations.
    Rathee P; Edelstein-Pardo N; Koren G; Beck R; Amir RJ
    Biomacromolecules; 2024 Jun; 25(6):3607-3619. PubMed ID: 38776179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo.
    Behroozi F; Abdkhodaie MJ; Abandansari HS; Satarian L; Molazem M; Al-Jamal KT; Baharvand H
    Acta Biomater; 2018 Aug; 76():239-256. PubMed ID: 29928995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition.
    Shi Y; Hu Y; Ochbaum G; Lin R; Bitton R; Cui H; Azevedo HS
    Chem Commun (Camb); 2017 Jul; 53(52):7037-7040. PubMed ID: 28613294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of block copolymer micelles to control burst drug release at a nanoscale dimension.
    Soleymani Abyaneh H; Vakili MR; Zhang F; Choi P; Lavasanifar A
    Acta Biomater; 2015 Sep; 24():127-39. PubMed ID: 26093068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation.
    Cheng CC; Chang FC; Kao WY; Hwang SM; Liao LC; Chang YJ; Liang MC; Chen JK; Lee DJ
    Acta Biomater; 2016 Mar; 33():194-202. PubMed ID: 26796210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water.
    Lutz E; Moulin E; Tchakalova V; Benczédi D; Herrmann A; Giuseppone N
    Chemistry; 2021 Sep; 27(53):13457-13467. PubMed ID: 34270124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.