These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36855620)

  • 1. Reinforced Polyphenylene Ionomer Membranes Exhibiting High Fuel Cell Performance and Mechanical Durability.
    Miyake J; Watanabe T; Shintani H; Sugawara Y; Uchida M; Miyatake K
    ACS Mater Au; 2021 Sep; 1(1):81-88. PubMed ID: 36855620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement effect in tandemly sulfonated, partially fluorinated polyphenylene PEMs for fuel cells.
    Guo L; Masuda A; Miyatake K
    RSC Adv; 2023 Apr; 13(16):11225-11233. PubMed ID: 37056974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Fuel Cell Operable at 120 °C Using Polyphenlyene Ionomer Membranes with Improved Interfacial Compatibility.
    Long Z; Miyatake K
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15366-15372. PubMed ID: 33755439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for synthesis and characterization of ePTFE reinforced, sulfonated polyphenylene in the application to proton exchange membrane fuel cells.
    Long Z; Miyatake K
    STAR Protoc; 2022 Mar; 3(1):101049. PubMed ID: 34977688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ePTFE reinforced, sulfonated aromatic polymer membranes enable durable, high-temperature operable PEMFCs.
    Long Z; Miyatake K
    iScience; 2021 Sep; 24(9):102962. PubMed ID: 34458706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
    Miyake J; Taki R; Mochizuki T; Shimizu R; Akiyama R; Uchida M; Miyatake K
    Sci Adv; 2017 Oct; 3(10):eaao0476. PubMed ID: 29075671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-conductive aromatic membranes reinforced with poly(vinylidene fluoride) nanofibers for high-performance durable fuel cells.
    Liu F; Kim IS; Miyatake K
    Sci Adv; 2023 Jul; 9(30):eadg9057. PubMed ID: 37494437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.
    Kim HK; Zhang G; Nam C; Chung TC
    Membranes (Basel); 2015 Dec; 5(4):875-87. PubMed ID: 26690232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers.
    Pasquini L; Sauvan M; Narducci R; Sgreccia E; Knauth P; Di Vona ML
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Hydrophilic Component in Aromatic Ionomers: Simple Structure Provides Improved Properties as Fuel Cell Membranes.
    Miyake J; Mochizuki T; Miyatake K
    ACS Macro Lett; 2015 Jul; 4(7):750-754. PubMed ID: 35596471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Polyethylene Supports in Reinforcement of Multiblock Hydrocarbon Ionomers for Proton Exchange Membranes.
    Lee CJ; Hong SJ; Song J; Yoon KS; Oh KH; Lee JY; Yoon SJ; Hong YT; Lee SY; Yu DM; So S
    Langmuir; 2023 Dec; 39(51):18834-18845. PubMed ID: 38091527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes.
    Adamski M; Skalski TJG; Britton B; Peckham TJ; Metzler L; Holdcroft S
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9058-9061. PubMed ID: 28609604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humidity-Dependent Hydration and Proton Conductivity of PFSA Ionomer Thin Films at Fuel-Cell-Relevant Temperatures: Effect of Ionomer Equivalent Weight and Side-Chain Characteristics.
    Eskandari H; Paul DK; Young AP; Karan K
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50762-50772. PubMed ID: 36342365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stable polyphenylene ionomer membranes from dichlorobiphenyls.
    Shiino K; Miyake J; Miyatake K
    Chem Commun (Camb); 2019 Jun; 55(49):7073-7076. PubMed ID: 31147652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes.
    Lee JR; Won JH; Kim NY; Lee MS; Lee SY
    J Colloid Interface Sci; 2011 Oct; 362(2):607-14. PubMed ID: 21788024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Layer ePTFE-Reinforced Membrane Electrode Assemblies Prepared by a Reverse Membrane Deposition Process for High-Performance and Durable Proton Exchange Membrane Fuel Cells.
    Liu L; Fu Z; Xing Y; Li Y; Zhou X; Li Z; Li H
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30281-30293. PubMed ID: 37331008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layer ionomer membrane for improving fuel cell performance.
    Mochizuki T; Uchida M; Uchida H; Watanabe M; Miyatake K
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13894-9. PubMed ID: 24988282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.