These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36855668)

  • 1. Alternatives to Iridium: A Polyaza[7]helicene as a Strongly Reductive Visible Light Photoredox Catalyst.
    Rocker J; Opatz T
    ACS Org Inorg Au; 2022 Oct; 2(5):415-421. PubMed ID: 36855668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly Reducing, Visible-Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals.
    Du Y; Pearson RM; Lim CH; Sartor SM; Ryan MD; Yang H; Damrauer NH; Miyake GM
    Chemistry; 2017 Aug; 23(46):10962-10968. PubMed ID: 28654171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A General Copper-based Photoredox Catalyst for Organic Synthesis: Scope, Application in Natural Product Synthesis and Mechanistic Insights.
    Deldaele C; Michelet B; Baguia H; Kajouj S; Romero E; Moucheron C; Evano G
    Chimia (Aarau); 2018 Sep; 72(9):621-629. PubMed ID: 30257738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Dulov DA; Bogdanov AV; Dorofeev SG; Magdesieva TV
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic investigations of polyaza[7]helicene in photoredox and energy transfer catalysis.
    Rocker J; Zähringer TJB; Schmitz M; Opatz T; Kerzig C
    Beilstein J Org Chem; 2024; 20():1236-1245. PubMed ID: 38887585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry.
    Ma J; Zhang X; Huang X; Luo S; Meggers E
    Nat Protoc; 2018 Apr; 13(4):605-632. PubMed ID: 29494576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cu(dap)2Cl] as an efficient visible-light-driven photoredox catalyst in carbon-carbon bond-forming reactions.
    Pirtsch M; Paria S; Matsuno T; Isobe H; Reiser O
    Chemistry; 2012 Jun; 18(24):7336-40. PubMed ID: 22581462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenothiazines, Dihydrophenazines, and Phenoxazines: Sustainable Alternatives to Precious-Metal-Based Photoredox Catalysts.
    Corbin DA; Lim CH; Miyake GM
    Aldrichimica Acta; 2019; 52(1):7-21. PubMed ID: 31839678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Metal-Free Approach to 1,2-Diamines via Visible Light-Driven Reductive Coupling of Imines with Perylene as a Photoredox Catalyst.
    Okamoto S; Ariki R; Tsujioka H; Sudo A
    J Org Chem; 2017 Sep; 82(18):9731-9736. PubMed ID: 28836438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-free reductive coupling of C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds driven by visible light: use of perylene as a simple photoredox catalyst.
    Okamoto S; Kojiyama K; Tsujioka H; Sudo A
    Chem Commun (Camb); 2016 Oct; 52(76):11339-42. PubMed ID: 27510269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoredox Catalysis Using Heterogenized Iridium Complexes*.
    Materna KL; Hammarström L
    Chemistry; 2021 Dec; 27(68):16966-16977. PubMed ID: 34137473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Runs Across Iron Catalysts in Organic Transformations.
    Zhou WJ; Wu XD; Miao M; Wang ZH; Chen L; Shan SY; Cao GM; Yu DG
    Chemistry; 2020 Nov; 26(66):15052-15064. PubMed ID: 32614093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.