These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36855687)

  • 21. Nonlinear Temperature-Dependent Phonon Decay in Heavily Doped Silicon: Predominant Interferon-Mediated Cold Phonon Annihilation.
    Rani C; Tanwar M; Kandpal S; Ghosh T; Bansal L; Kumar R
    J Phys Chem Lett; 2022 Jun; ():5232-5239. PubMed ID: 35670640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of the Fano resonance in a temperature dependent Raman study of CaCu3Ti4O12 and SrCu3Ti4O12.
    Mishra DK; Sathe VG
    J Phys Condens Matter; 2012 Jun; 24(25):252202. PubMed ID: 22635438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The study on Raman spectra of Si nanowires].
    Tan Y; Tang YH; Pei LZ; Chen YW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):725-9. PubMed ID: 17608184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy.
    Lin ML; Miscuglio M; Polovitsyn A; Leng YC; Martín-García B; Moreels I; Tan PH; Krahne R
    J Phys Chem Lett; 2019 Feb; 10(3):399-405. PubMed ID: 30626187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fano lineshape and phonon softening in single isolated metallic carbon nanotubes.
    Nguyen KT; Gaur A; Shim M
    Phys Rev Lett; 2007 Apr; 98(14):145504. PubMed ID: 17501287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic electron-photon-phonon coupling in layered MoS
    Kumar D; Singh B; Kumar R; Kumar M; Kumar P
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32512557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep-Ultraviolet and Helicity-Dependent Raman Spectroscopy for Carbon Nanotubes and 2D Materials.
    Saito R; Hung NT; Yang T; Huang J; Liu HL; Gulo DP; Han S; Tong L
    Small; 2024 Feb; ():e2308558. PubMed ID: 38412418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fano resonance between coherent acoustic phonon oscillations and electronic states near the bandgap of photoexcited GaAs.
    Vinod M; Raghavan G; Sivasubramanian V
    Sci Rep; 2018 Dec; 8(1):17706. PubMed ID: 30532007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.
    Del Corro E; Botello-Méndez A; Gillet Y; Elias AL; Terrones H; Feng S; Fantini C; Rhodes D; Pradhan N; Balicas L; Gonze X; Charlier JC; Terrones M; Pimenta MA
    Nano Lett; 2016 Apr; 16(4):2363-8. PubMed ID: 26998817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observing the ultrafast buildup of a Fano resonance in the time domain.
    Kaldun A; Blättermann A; Stooß V; Donsa S; Wei H; Pazourek R; Nagele S; Ott C; Lin CD; Burgdörfer J; Pfeifer T
    Science; 2016 Nov; 354(6313):738-741. PubMed ID: 27846603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitation energy-dependent nature of Raman scattering spectrum in GaInNAs/GaAs quantum well structures.
    Erol A; Akalin E; Sarcan F; Donmez O; Akyuz S; Arikan CM; Puustinen J; Guina M
    Nanoscale Res Lett; 2012 Nov; 7(1):656. PubMed ID: 23190628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.
    Strelchuk VV; Nikolenko AS; Gubanov VO; Biliy MM; Bulavin LA
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8671-5. PubMed ID: 23421263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dependence of Raman and absorption spectra of stacked bilayer MoS
    Park S; Kim H; Kim MS; Han GH; Kim J
    Opt Express; 2016 Sep; 24(19):21551-9. PubMed ID: 27661893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals.
    Baker JA; Kelley DF; Kelley AM
    J Chem Phys; 2013 Jul; 139(2):024702. PubMed ID: 23862954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering.
    Liu HL; Guo H; Yang T; Zhang Z; Kumamoto Y; Shen CC; Hsu YT; Li LJ; Saito R; Kawata S
    Phys Chem Chem Phys; 2015 Jun; 17(22):14561-8. PubMed ID: 25969355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband Full-Spectrum Raman Excitation Mapping Reveals Intricate Optoelectronic-Vibrational Resonance Structure of Chirality-Pure Single-Walled Carbon Nanotubes.
    Finnie P; Ouyang J; Fagan JA
    ACS Nano; 2023 Apr; 17(8):7285-7295. PubMed ID: 37010116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes.
    Saxena SK; Yogi P; Mishra S; Rai HM; Mishra V; Warshi MK; Roy S; Mondal P; Sagdeo PR; Kumar R
    Phys Chem Chem Phys; 2017 Dec; 19(47):31788-31795. PubMed ID: 29170785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon.
    Rani C; Tanwar M; Ghosh T; Kandpal S; Pathak DK; Chaudhary A; Yogi P; Saxena SK; Kumar R
    Anal Chem; 2022 Jan; 94(3):1510-1514. PubMed ID: 34994546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials.
    Reichardt S; Wirtz L
    Sci Adv; 2020 Aug; 6(32):eabb5915. PubMed ID: 32821840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.