These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 36855703)

  • 1. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics.
    Kim J; Song O; Cho YS; Jung M; Rhee D; Kang J
    ACS Mater Au; 2022 Jul; 2(4):382-393. PubMed ID: 36855703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Solution-Processed Van der Waals Heterostructures for Wafer-Scale Electronics.
    Kim J; Rhee D; Song O; Kim M; Kwon YH; Lim DU; Kim IS; Mazánek V; Valdman L; Sofer Z; Cho JH; Kang J
    Adv Mater; 2022 Mar; 34(12):e2106110. PubMed ID: 34933395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.
    Kang J; Sangwan VK; Wood JD; Hersam MC
    Acc Chem Res; 2017 Apr; 50(4):943-951. PubMed ID: 28240855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet printing of two-dimensional van der Waals materials: a new route towards emerging electronic device applications.
    Cho K; Lee T; Chung S
    Nanoscale Horiz; 2022 Sep; 7(10):1161-1176. PubMed ID: 35894100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layered Intercalation Materials.
    Zhou J; Lin Z; Ren H; Duan X; Shakir I; Huang Y; Duan X
    Adv Mater; 2021 Jun; 33(25):e2004557. PubMed ID: 33984164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van der Waals-Interface-Dominated All-2D Electronics.
    Zhang X; Zhang Y; Yu H; Zhao H; Cao Z; Zhang Z; Zhang Y
    Adv Mater; 2023 Dec; 35(50):e2207966. PubMed ID: 36353883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK; Lee HS; Lee YH
    Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials.
    Gao H; Wang Z; Cao J; Lin YC; Ling X
    ACS Nano; 2024 Jul; 18(26):16343-16358. PubMed ID: 38899467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable 1D van der Waals Nanostructures by Vapor-Liquid-Solid Growth.
    Sutter P; Sutter E
    Acc Chem Res; 2023 Nov; 56(22):3235-3245. PubMed ID: 37938893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications.
    Zhang G; Wu H; Zhang L; Yang L; Xie Y; Guo F; Li H; Tao B; Wang G; Zhang W; Chang H
    Small; 2022 Nov; 18(47):e2204380. PubMed ID: 36135779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-processable 2D semiconductors for high-performance large-area electronics.
    Lin Z; Liu Y; Halim U; Ding M; Liu Y; Wang Y; Jia C; Chen P; Duan X; Wang C; Song F; Li M; Wan C; Huang Y; Duan X
    Nature; 2018 Oct; 562(7726):254-258. PubMed ID: 30283139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High mobility in a van der Waals layered antiferromagnetic metal.
    Lei S; Lin J; Jia Y; Gray M; Topp A; Farahi G; Klemenz S; Gao T; Rodolakis F; McChesney JL; Ast CR; Yazdani A; Burch KS; Wu S; Ong NP; Schoop LM
    Sci Adv; 2020 Feb; 6(6):eaay6407. PubMed ID: 32083184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature in-plane ferroelectricity in van der Waals In
    Zheng C; Yu L; Zhu L; Collins JL; Kim D; Lou Y; Xu C; Li M; Wei Z; Zhang Y; Edmonds MT; Li S; Seidel J; Zhu Y; Liu JZ; Tang WX; Fuhrer MS
    Sci Adv; 2018 Jul; 4(7):eaar7720. PubMed ID: 30027116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. van der Waals Layered Materials: Opportunities and Challenges.
    Duong DL; Yun SJ; Lee YH
    ACS Nano; 2017 Dec; 11(12):11803-11830. PubMed ID: 29219304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-Bonding Integrated Low-Dimensional Flexible Electronics Beyond the Limitations of van der Waals Contacts.
    Liu D; Liu Z; Gao X; Zhu J; Wang Z; Qiu R; Ren Q; Zhang Y; Zhang S; Zhang M
    Adv Mater; 2024 Jun; ():e2404626. PubMed ID: 38825781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal Thermal Stress-Driven Phase Transformation in Van der Waals Layered Materials.
    Yun SJ; Choi SH; Kim JW; Yoon D; Cho BW; Won YS; Kim JW; Lee J; Kim YI; Kim YM; Kirubasankar B; Kim SM; Kim KK; Lee YH
    ACS Nano; 2022 Oct; 16(10):17033-17040. PubMed ID: 36173357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Van Der Waals Thin Film and Device.
    Liao L; Kovalska E; Regner J; Song Q; Sofer Z
    Small; 2024 Jan; 20(4):e2303638. PubMed ID: 37731156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable wafer-scale integration of two-dimensional materials and metal electrodes with van der Waals contacts.
    Zhang X; Huang C; Li Z; Fu J; Tian J; Ouyang Z; Yang Y; Shao X; Han Y; Qiao Z; Zeng H
    Nat Commun; 2024 May; 15(1):4619. PubMed ID: 38816431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric, electronic, and optical properties of MoS
    Zhang YF; Pan J; Du S
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34038884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Fabrication of Quasi-One-Dimensional van der Waals Ta
    Choi KH; Lee SH; Kang J; Zhang X; Jeon J; Bang HS; Kim Y; Kim D; Kim KI; Kim YH; Oh HS; Chang J; Lee JH; Yu HK; Choi JY
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35463-35473. PubMed ID: 38946100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.