BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36855771)

  • 1. Quantifying Effects of Active Site Proximity on Rates of Methanol Dehydration to Dimethyl Ether over Chabazite Zeolites through Microkinetic Modeling.
    Marsden G; Kostetskyy P; Sekiya RS; Hoffman A; Lee S; Gounder R; Hibbitts D; Broadbelt LJ
    ACS Mater Au; 2022 Mar; 2(2):163-175. PubMed ID: 36855771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigid Arrangements of Ionic Charge in Zeolite Frameworks Conferred by Specific Aluminum Distributions Preferentially Stabilize Alkanol Dehydration Transition States.
    Hoffman AJ; Bates JS; Di Iorio JR; Nystrom SV; Nimlos CT; Gounder R; Hibbitts D
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18686-18694. PubMed ID: 32659034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Synthesis of Chabazite Zeolites via Interzeolite Conversion of Faujasites.
    Dang LV; Nguyen TTM; Do DV; Le ST; Pham TD; Le ATM
    J Anal Methods Chem; 2021; 2021():5554568. PubMed ID: 33859863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent synthesis of dimethyl ether (DME) from methanol over beta zeolite: a novel approach to a sustainable fuel.
    Chaudhary PK; Arundhathi R; Kasture MW; Samanta C; Vankayala R; Thota C
    R Soc Open Sci; 2023 Aug; 10(8):230524. PubMed ID: 37621656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy.
    Xu J; Wang Q; Deng F
    Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel quantum mechanical calculations show the role of promoter molecules in the dehydration of methanol to dimethyl ether in H-ZSM-5.
    Crossley-Lewis J; Dunn J; Hickman IF; Jackson F; Sunley GJ; Buda C; Mulholland AJ; Allan NL
    Phys Chem Chem Phys; 2024 Jun; 26(23):16693-16707. PubMed ID: 38809246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption products during linear heating of copper zeolites with pre-adsorbed methanol.
    Wang X; Arvidsson AA; Skoglundh M; Hellman A; Carlsson PA
    Phys Chem Chem Phys; 2020 Apr; 22(13):6809-6817. PubMed ID: 32159551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Detection of Paired Aluminum Heteroatoms in Chabazite Zeolite Catalysts and Their Significance for Methanol Dehydration Reactivity.
    Schmithorst MB; Prasad S; Moini A; Chmelka BF
    J Am Chem Soc; 2023 Aug; 145(33):18215-18220. PubMed ID: 37552830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics.
    Catizzone E; Giglio E; Migliori M; Cozzucoli PC; Giordano G
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the conversion of methanol to dimethyl ether on zeolite HZSM-5 using in situ flow MAS NMR.
    Carlson LK; Isbester PK; Munson EJ
    Solid State Nucl Magn Reson; 2000 May; 16(1-2):93-102. PubMed ID: 10811434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Synthesis of Dimethyl Ether from Syngas Over Hybrid Catalyst with Hierarchical ZSM-5 as the Methanol Dehydration Catalyst.
    Cai M; Xiang D; Cheng Q
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1245-1252. PubMed ID: 31383125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities.
    Zhang Q; Yu J; Corma A
    Adv Mater; 2020 Nov; 32(44):e2002927. PubMed ID: 32697378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis.
    Kirchberger FM; Liu Y; Plessow PN; Tonigold M; Studt F; Sanchez-Sanchez M; Lercher JA
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration.
    Marosz M; Samojeden B; Kowalczyk A; Rutkowska M; Motak M; Díaz U; Palomares AE; Chmielarz L
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32456028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of support and reaction pressure for the synthesis of dimethyl ether over heteropolyacid catalysts.
    Peinado C; Liuzzi D; Ladera-Gallardo RM; Retuerto M; Ojeda M; Peña MA; Rojas S
    Sci Rep; 2020 May; 10(1):8551. PubMed ID: 32444653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y.
    Nastase SAF; Catlow CRA; Logsdail AJ
    Phys Chem Chem Phys; 2021 Jan; 23(3):2088-2096. PubMed ID: 33434246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.
    Vjunov A; Derewinski MA; Fulton JL; Camaioni DM; Lercher JA
    J Am Chem Soc; 2015 Aug; 137(32):10374-82. PubMed ID: 26237038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the catalytic acidity in Al
    Rodriguez-Olguin MA; Cruz-Herbert RN; Atia H; Bosco M; Fornero EL; Eckelt R; De Haro Del Río DA; Aguirre A; Gardeniers JGE; Susarrey-Arce A
    Catal Sci Technol; 2022 Jul; 12(13):4243-4254. PubMed ID: 35873718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention.
    Hwang A; Bhan A
    Acc Chem Res; 2019 Sep; 52(9):2647-2656. PubMed ID: 31403774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.