These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36855777)

  • 1. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization.
    Ma ZC; Fan J; Wang H; Chen W; Yang GZ; Han B
    Small; 2023 Jun; 19(22):e2300469. PubMed ID: 36855777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imaging functionality.
    Jung JH; Han C; Lee SA; Kim J; Yang C
    Lab Chip; 2014 Oct; 14(19):3781-9. PubMed ID: 25099225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review.
    Lao Z; Xia N; Wang S; Xu T; Wu X; Zhang L
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel fabrication of soft microactuators with morphological computing using soft lithography.
    Tyagi M; Pan J; Jager EWH
    Microsyst Nanoeng; 2019; 5():44. PubMed ID: 31636933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ integrated microrobots driven by artificial muscles built from biomolecular motors.
    Wang Y; Nitta T; Hiratsuka Y; Morishima K
    Sci Robot; 2022 Aug; 7(69):eaba8212. PubMed ID: 36001686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing.
    Xu BB; Zhang YL; Xia H; Dong WF; Ding H; Sun HB
    Lab Chip; 2013 May; 13(9):1677-90. PubMed ID: 23493958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics.
    Wu R; Kim T
    Lab Chip; 2021 Apr; 21(7):1217-1240. PubMed ID: 33710187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out-of-Plane Soft Lithography for Soft Pneumatic Microactuator Arrays.
    Milana E; Gorissen B; De Borre E; Ceyssens F; Reynaerts D; De Volder M
    Soft Robot; 2023 Feb; 10(1):197-204. PubMed ID: 35704896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong and Highly Sensitive Fiber Microactuators Constructed by Force-Reeled Silks.
    Lin S; Wang Z; Chen X; Ren J; Ling S
    Adv Sci (Weinh); 2020 Mar; 7(6):1902743. PubMed ID: 32195093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel-based microactuators with remote-controlled locomotion and fast Pb2+-response for micromanipulation.
    Liu YM; Wang W; Zheng WC; Ju XJ; Xie R; Zerrouki D; Deng NN; Chu LY
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7219-26. PubMed ID: 23865475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Soft Microactuators.
    Zhu P; Chen R; Zhou C; Aizenberg M; Aizenberg J; Wang L
    Adv Mater; 2021 May; 33(21):e2008558. PubMed ID: 33860582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace.
    Garmasukis R; Hackl C; Charvat A; Mayr SG; Abel B
    Curr Opin Biotechnol; 2023 Jun; 81():102948. PubMed ID: 37163825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators.
    Ferreira DA; Rothbauer M; Conde JP; Ertl P; Oliveira C; Granja PL
    Adv Sci (Weinh); 2021 Apr; 8(8):2003273. PubMed ID: 33898174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular and Self-Contained Microfluidic Analytical Platforms Enabled by Magnetorheological Elastomer Microactuators.
    Zhang Y; Cole T; Yun G; Li Y; Zhao Q; Lu H; Zheng J; Li W; Tang SY
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.