These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3685653)

  • 1. The effect of a proximal compliance on interrupter measurements of resistance.
    Bates JH; Sly PD; Kochi T; Martin JG
    Respir Physiol; 1987 Dec; 70(3):301-12. PubMed ID: 3685653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs.
    Bates JH; Ludwig MS; Sly PD; Brown K; Martin JG; Fredberg JJ
    J Appl Physiol (1985); 1988 Jul; 65(1):408-14. PubMed ID: 3042744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer analysis of physical factors affecting the use of the interrupter technique in infants.
    Sly PD; Bates JH
    Pediatr Pulmonol; 1988; 4(4):219-24. PubMed ID: 3393385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrupter airway and tissue resistance: errors caused by valve properties and respiratory system compliance.
    Kessler V; Mols G; Bernhard H; Haberthür C; Guttmann J
    J Appl Physiol (1985); 1999 Oct; 87(4):1546-54. PubMed ID: 10517790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of interrupter resistance in rabbits exposed to methacholine aerosols.
    Smith PG; Falahat A; Carlo WA
    J Appl Physiol (1985); 1992 Jun; 72(6):2454-7. PubMed ID: 1629102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer assessment of indirect insight during an airflow interrupter maneuver of breathing.
    Jabłoński I
    Comput Methods Programs Biomed; 2013 Jun; 110(3):320-32. PubMed ID: 23639117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of interrupter resistance after histamine-induced constriction in the dog.
    Ludwig MS; Romero PV; Sly PD; Fredberg JJ; Bates JH
    J Appl Physiol (1985); 1990 Apr; 68(4):1651-6. PubMed ID: 2347804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the cheeks and the compliance of alveolar gas on the measurement of respiratory variables.
    Jaeger MJ
    Respir Physiol; 1982 Mar; 47(3):325-40. PubMed ID: 7100690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper airway artifact in respiratory impedance measurements.
    Peslin R; Duvivier C; Gallina C; Cervantes P
    Am Rev Respir Dis; 1985 Sep; 132(3):712-4. PubMed ID: 4037543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical analysis of interrupter technique for measuring respiratory mechanics.
    Bates JH; Baconnier P; Milic-Emili J
    J Appl Physiol (1985); 1988 May; 64(5):2204-14. PubMed ID: 3391919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory mechanics determined by flow interruption during passive expiration in cats.
    Kochi T; Bates JH; Okubo S; Petersen ES; Milic-Emili J
    Respir Physiol; 1989 Nov; 78(2):243-52. PubMed ID: 2609031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and sensitivity of the interrupter technique for measuring the response to bronchial challenge in normal subjects.
    Phagoo SB; Watson RA; Pride NB; Silverman M
    Eur Respir J; 1993 Jul; 6(7):996-1003. PubMed ID: 8370449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pulmonary blood flow on measurements of respiratory mechanics using the interrupter technique.
    Freezer NJ; Lanteri CJ; Sly PD
    J Appl Physiol (1985); 1993 Mar; 74(3):1083-8. PubMed ID: 8482646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of interrupter and forced oscillation measurements of respiratory resistance in the dog.
    Bates JH; Daróczy B; Hantos Z
    J Appl Physiol (1985); 1992 Jan; 72(1):46-52. PubMed ID: 1537743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time.
    Eissa NT; Ranieri VM; Corbeil C; Chassé M; Robatto FM; Braidy J; Milic-Emili J
    J Appl Physiol (1985); 1991 Jun; 70(6):2719-29. PubMed ID: 1885468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas physical properties and respiratory system resistance measured by flow interruption.
    Abe T; Sato J; Romero P; Bates JH
    Respir Physiol; 1991 May; 84(2):159-70. PubMed ID: 1876757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption.
    Similowski T; Levy P; Corbeil C; Albala M; Pariente R; Derenne JP; Bates JH; Jonson B; Milic-Emili J
    J Appl Physiol (1985); 1989 Dec; 67(6):2219-29. PubMed ID: 2606827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of PEEP on respiratory mechanics in anesthetized paralyzed humans.
    D'Angelo E; Calderini E; Tavola M; Bono D; Milic-Emili J
    J Appl Physiol (1985); 1992 Nov; 73(5):1736-42. PubMed ID: 1474045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable device based on the interrupter technique for measuring airway resistance in preschool children.
    Derman O; Yaramis A; Kirbas G
    J Investig Allergol Clin Immunol; 2004; 14(2):121-6. PubMed ID: 15301301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human respiratory input impedance between 32 and 800 Hz, measured by interrupter technique and forced oscillations.
    Frey U; Suki B; Kraemer R; Jackson AC
    J Appl Physiol (1985); 1997 Mar; 82(3):1018-23. PubMed ID: 9074996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.