These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 368569)

  • 1. Regulation of catalase synthesis in Saccharomyces cerevisiae by carbon catabolite repression.
    Cross HS; Ruis H
    Mol Gen Genet; 1978 Oct; 166(1):37-43. PubMed ID: 368569
    [No Abstract]   [Full Text] [Related]  

  • 2. The nature of the glucose effect on the induced synthesis of catalase in Saccharomyces cerevisiae.
    Sulebele GA; Rege DV
    Enzymologia; 1968 Dec; 35(6):321-34. PubMed ID: 5719340
    [No Abstract]   [Full Text] [Related]  

  • 3. Haemoprotein formation in yeast. III. The role of carbon catabolite repression in the regulation of catalase A and T formation.
    Rytka J; Sledziewski A; Lukaszkiewicz J; Biliński T
    Mol Gen Genet; 1978 Mar; 160(1):51-7. PubMed ID: 347248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal by phosphate of glucose repression of catalase synthesis in Saccharomyces cerevisiae.
    Sulebele GA; Rege DV
    Nature; 1967 Jul; 215(5099):420-1. PubMed ID: 6058308
    [No Abstract]   [Full Text] [Related]  

  • 5. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae.
    Lodi T; Donnini C; Ferrero I
    J Gen Microbiol; 1991 May; 137(5):1039-44. PubMed ID: 1865178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant.
    Borralho LM; Panek AD; Malamud DR; Sanders HK; Mattoon JR
    J Bacteriol; 1983 Oct; 156(1):141-7. PubMed ID: 6352674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalase anabolism in yeast: loss of regulation by oxygen of catalase apoprotein synthesis after mutation.
    Berte C; Sels A
    Mol Gen Genet; 1979 Apr; 172(1):45-52. PubMed ID: 377023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of catalase and peroxidase biosynthesis by carbon source and oxygen in the yeast Saccharomyces cerevisiae.
    Valdivia E; Martinez J; Ortega JM; Montoya E
    Can J Microbiol; 1983 Sep; 29(9):1200-4. PubMed ID: 6317151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects.
    Adams BG
    J Bacteriol; 1972 Aug; 111(2):308-15. PubMed ID: 4559724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature sensitivity of catalase induction in Saccharomyces cerevisiae.
    Sulebele GA; Rege DV
    Enzymologia; 1967 Dec; 33(6):354-60. PubMed ID: 5621991
    [No Abstract]   [Full Text] [Related]  

  • 12. The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation.
    de Jong-Gubbels P; van den Berg MA; Steensma HY; van Dijken JP; Pronk JT
    FEMS Microbiol Lett; 1997 Aug; 153(1):75-81. PubMed ID: 9252575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae.
    Matsumoto K; Yoshimatsu T; Oshima Y
    J Bacteriol; 1983 Mar; 153(3):1405-14. PubMed ID: 6337998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase.
    Palecek SP; Parikh AS; Huh JH; Kron SJ
    Mol Microbiol; 2002 Jul; 45(2):453-69. PubMed ID: 12123456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoprotein formation in yeast. VI. Mutants with changed levels of catalase and of other heme enzymes under conditions of glucose repression.
    Biliński T; Sledziewski A; Rytka J
    Acta Microbiol Pol; 1980; 29(3):183-97. PubMed ID: 19852105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen and heme.
    Hörtner H; Ammerer G; Hartter E; Hamilton B; Rytka J; Bilinski T; Ruis H
    Eur J Biochem; 1982 Nov; 128(1):179-84. PubMed ID: 6293826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose.
    Gallo M; Katz E
    J Bacteriol; 1972 Feb; 109(2):659-67. PubMed ID: 4110143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.