These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36857263)

  • 41. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-speed physical key distribution based on dispersion-shift-keying chaos synchronization in commonly driven semiconductor lasers without external feedback.
    Wang L; Chao M; Wang A; Gao H; Li S; Guo Y; Wang Y; Yan L
    Opt Express; 2020 Dec; 28(25):37919-37935. PubMed ID: 33379616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-frequency chaotic dynamics enabled by optical phase-conjugation.
    Mercier É; Wolfersberger D; Sciamanna M
    Sci Rep; 2016 Jan; 6():18988. PubMed ID: 26739806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback.
    Takiguchi Y; Ohyagi K; Ohtsubo J
    Opt Lett; 2003 Mar; 28(5):319-21. PubMed ID: 12659431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Misestimate of the performance in VCSEL-based reservoir computing systems with optical information injection by high surface reflectivity.
    Wang Q; Xia G; Tan S; Liu Y; Liu Y; Zhao M; Wu Z
    Appl Opt; 2022 Dec; 61(34):10086-10091. PubMed ID: 36606768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of injection current on the synchronization and communication performance of closed-loop chaotic semiconductor lasers.
    Jiang N; Pan W; Luo B; Yan L; Xiang S; Yang L; Zheng D; Li N
    Opt Lett; 2011 Aug; 36(16):3197-9. PubMed ID: 21847206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing.
    Cunillera A; Soriano MC; Fischer I
    Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection.
    Hou Y; Xia G; Yang W; Wang D; Jayaprasath E; Jiang Z; Hu C; Wu Z
    Opt Express; 2018 Apr; 26(8):10211-10219. PubMed ID: 29715961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced optoelectronic reservoir computation using semiconductor laser with double delay feedbacks.
    Liang W; Jiang L; Song W; Jia X; Deng Q; Liu L; Zhang X; Wang Q
    Appl Opt; 2023 Jan; 62(3):620-626. PubMed ID: 36821265
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback.
    Wu JG; Xia GQ; Wu ZM
    Opt Express; 2009 Oct; 17(22):20124-33. PubMed ID: 19997236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal.
    Nakayama J; Kanno K; Uchida A
    Opt Express; 2016 Apr; 24(8):8679-92. PubMed ID: 27137303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers.
    Lin FY; Tsai MC
    Opt Express; 2007 Jan; 15(2):302-11. PubMed ID: 19532245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Secure Communication via Chaotic Synchronization Based on Reservoir Computing.
    Liu J; Zhang J; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):285-299. PubMed ID: 35653446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine learning algorithms for predicting the amplitude of chaotic laser pulses.
    Amil P; Soriano MC; Masoller C
    Chaos; 2019 Nov; 29(11):113111. PubMed ID: 31779344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental control of mode-competition dynamics in a chaotic multimode semiconductor laser for decision making.
    Iwami R; Mihana T; Kanno K; Naruse M; Uchida A
    Opt Express; 2024 May; 32(10):17274-17294. PubMed ID: 38858916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of the input signal's phase modulation on the performance of optical delay-based reservoir computing using semiconductor lasers.
    Bauwens I; Harkhoe K; Bienstman P; Verschaffelt G; Van der Sande G
    Opt Express; 2022 Apr; 30(8):13434-13446. PubMed ID: 35472955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Statistical properties for an optically injected chaotic semiconductor laser with a high-pass filter.
    Liang S; Li P; Cai Q; Li Q; Zhang J; Qin Y; Wang Y
    Opt Lett; 2024 May; 49(10):2609-2612. PubMed ID: 38748117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid integrated optical chaos circuits with optoelectronic feedback.
    Wang Y; Wu Z; Li B; Chen J; Shen L; Yang H; Feng Y; Chen X; Li M
    Opt Express; 2024 Apr; 32(9):15923-15935. PubMed ID: 38859231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection.
    Someya H; Oowada I; Okumura H; Kida T; Uchida A
    Opt Express; 2009 Oct; 17(22):19536-43. PubMed ID: 19997173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.