These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36857340)

  • 1. Using a latent Hawkes process for epidemiological modelling.
    Lamprinakou S; Gandy A; McCoy E
    PLoS One; 2023; 18(3):e0281370. PubMed ID: 36857340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates.
    Chiang WH; Liu X; Mohler G
    Int J Forecast; 2022; 38(2):505-520. PubMed ID: 34276115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproduction Factor Based Latent Epidemic Model Inference: A Data-Driven Approach Using COVID-19 Datasets.
    Ahn S; Kwon M
    IEEE J Biomed Health Inform; 2023 Mar; 27(3):1259-1270. PubMed ID: 36215342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple discrete-time self-exciting models can describe complex dynamic processes: A case study of COVID-19.
    Browning R; Sulem D; Mengersen K; Rivoirard V; Rousseau J
    PLoS One; 2021; 16(4):e0250015. PubMed ID: 33836020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
    Taghizadeh L; Karimi A; Heitzinger C
    Comput Biol Med; 2020 Oct; 125():104011. PubMed ID: 33091766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-parametric Hawkes model of the spread of Ebola in west Africa.
    Park J; Chaffee AW; Harrigan RJ; Schoenberg FP
    J Appl Stat; 2022; 49(3):621-637. PubMed ID: 35706773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal data visualization for monitoring of control measures in the prevention of the spread of COVID-19 in Bosnia and Herzegovina.
    Ponjavić M; Karabegović A; Ferhatbegović E; Tahirović E; Uzunović S; Travar M; Pilav A; Mulić M; Karakaš S; Avdić N; Mulabdić Z; Pavić G; Bičo M; Vasilj I; Mamić D; Hukić M
    Med Glas (Zenica); 2020 Aug; 17(2):265-274. PubMed ID: 32602300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study.
    Russell TW; Wu JT; Clifford S; Edmunds WJ; Kucharski AJ; Jit M;
    Lancet Public Health; 2021 Jan; 6(1):e12-e20. PubMed ID: 33301722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A LSTM-Hawkes hybrid model for posterior click distribution forecast in the advertising network environment.
    Hwang S; Joe I
    PLoS One; 2020; 15(6):e0232887. PubMed ID: 32502154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling dyadic interaction with Hawkes processes.
    Halpin PF; De Boeck P
    Psychometrika; 2013 Oct; 78(4):793-814. PubMed ID: 24092489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and forecasting the impact of local outbreaks of COVID-19: use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity.
    Campillo-Funollet E; Van Yperen J; Allman P; Bell M; Beresford W; Clay J; Dorey M; Evans G; Gilchrist K; Memon A; Pannu G; Walkley R; Watson M; Madzvamuse A
    Int J Epidemiol; 2021 Aug; 50(4):1103-1113. PubMed ID: 34244764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Hawkes Processes to model imported and local malaria cases in near-elimination settings.
    Unwin HJT; Routledge I; Flaxman S; Rizoiu MA; Lai S; Cohen J; Weiss DJ; Mishra S; Bhatt S
    PLoS Comput Biol; 2021 Apr; 17(4):e1008830. PubMed ID: 33793564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the complete spatiotemporal spread of the COVID-19 epidemic in mainland China.
    Hu B; Ning P; Qiu J; Tao V; Devlin AT; Chen H; Wang J; Lin H
    Int J Infect Dis; 2021 Sep; 110():247-257. PubMed ID: 33862212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonparametric estimation of recursive point processes with application to mumps in Pennsylvania.
    Kaplan A; Park J; Kresin C; Schoenberg F
    Biom J; 2022 Jan; 64(1):20-32. PubMed ID: 34426992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latent likelihood ratio tests for assessing spatial kernels in epidemic models.
    Thong D; Streftaris G; Gibson GJ
    J Math Biol; 2020 Sep; 81(3):853-873. PubMed ID: 32892255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating bias in estimating epidemic severity due to heterogeneity of epidemic onset and data aggregation.
    Krishnan RG; Cenci S; Bourouiba L
    Ann Epidemiol; 2022 Jan; 65():1-14. PubMed ID: 34419601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Pfadenhauer LM; von Philipsborn P; Sell K; Voss S; Rehfuess E
    Cochrane Database Syst Rev; 2020 Oct; 10():CD013717. PubMed ID: 33502002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data.
    He D; Zhao S; Lin Q; Musa SS; Stone L
    PLoS Negl Trop Dis; 2020 Apr; 14(4):e0007502. PubMed ID: 32348302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Compartment Model of COVID-19 Transmission: The Broken-Link Model.
    Ikeda Y; Sasaki K; Nakano T
    Int J Environ Res Public Health; 2022 Jun; 19(11):. PubMed ID: 35682447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.