These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36857456)

  • 1. Shear shock waves mediate haptic holography via focused ultrasound.
    Reardon G; Dandu B; Shao Y; Visell Y
    Sci Adv; 2023 Mar; 9(9):eadf2037. PubMed ID: 36857456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rendering Dynamic Source Motion in Surface Haptics via Wave Focusing.
    Reardon G; Goetz D; Linnander M; Visell Y
    IEEE Trans Haptics; 2023; 16(4):602-608. PubMed ID: 37192024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rendering Spatiotemporal Haptic Effects Via the Physics of Waves in the Skin.
    Dandu B; Shao Y; Visell Y
    IEEE Trans Haptics; 2021; 14(2):347-358. PubMed ID: 33044942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain.
    Giammarinaro B; Coulouvrat F; Pinton G
    J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bypassing absorbing objects in focused ultrasound using computer generated holographic technique.
    Hertzberg Y; Navon G
    Med Phys; 2011 Dec; 38(12):6407-15. PubMed ID: 22149824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear X-wave ultrasound imaging of acoustic biomolecules.
    Maresca D; Sawyer DP; Renaud G; Lee-Gosselin A; Shapiro MG
    Phys Rev X; 2018; 8(4):. PubMed ID: 34040818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography.
    Mazumdar YC; Smyser ME; Heyborne JD; Slipchenko MN; Guildenbecher DR
    Nat Commun; 2020 Feb; 11(1):1129. PubMed ID: 32111824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials.
    Wu Z; Hoyt K; Rubens DJ; Parker KJ
    J Acoust Soc Am; 2006 Jul; 120(1):535-45. PubMed ID: 16875250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-of-flight and noise-correlation-inspired algorithms for full-field shear-wave elastography using digital holography.
    Marmin A; Laloy-Borgna G; Facca S; Gioux S; Catheline S; Nahas A
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34414704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro quantification of rat liver viscoelasticity with shear wave dispersion ultrasound vibrometry.
    Guo YR; Chen X; Lin H; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1915-8. PubMed ID: 24110087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "I Can Feel It Coming in the Hairs Tonight": Characterising Mid-Air Haptics on the Hairy Parts of the Skin.
    Pittera D; Georgiou O; Abdouni A; Frier W
    IEEE Trans Haptics; 2022; 15(1):188-199. PubMed ID: 34495841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile Perceptual Thresholds of Electrovibration in VR.
    Zhao L; Liu Y; Song W
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2618-2626. PubMed ID: 33750706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PUMAH: Pan-Tilt Ultrasound Mid-Air Haptics for Larger Interaction Workspace in Virtual Reality.
    Howard T; Marchal M; Lecuyer A; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):38-44. PubMed ID: 31902770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfiltered holography: optimizing high diffraction orders without optical filtering for compact holographic displays.
    Gopakumar M; Kim J; Choi S; Peng Y; Wetzstein G
    Opt Lett; 2021 Dec; 46(23):5822-5825. PubMed ID: 34851899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.