BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 36857616)

  • 21. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria.
    Wang Y; Cui P; Zhang Y; Yang Q; Zhang S
    Fish Shellfish Immunol; 2018 Jun; 77():100-111. PubMed ID: 29567140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and Toxicological Evaluation of MAA-41: A Novel Rationally Designed Antimicrobial Peptide Using Hybridization and Modification Methods from LL-37 and BMAP-28.
    Masadeh M; Ayyad A; Haddad R; Alsaggar M; Alzoubi K; Alrabadi N
    Curr Pharm Des; 2022; 28(26):2177-2188. PubMed ID: 35792128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations.
    Das P; Sercu T; Wadhawan K; Padhi I; Gehrmann S; Cipcigan F; Chenthamarakshan V; Strobelt H; Dos Santos C; Chen PY; Yang YY; Tan JPK; Hedrick J; Crain J; Mojsilovic A
    Nat Biomed Eng; 2021 Jun; 5(6):613-623. PubMed ID: 33707779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of two enantiomers of a designer antimicrobial peptide with structural components of the bacterial cell envelope.
    Ye Z; Aparicio C
    J Pept Sci; 2022 Jan; 28(1):e3299. PubMed ID: 33496073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A lack of synergy between membrane-permeabilizing cationic antimicrobial peptides and conventional antibiotics.
    He J; Starr CG; Wimley WC
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):8-15. PubMed ID: 25268681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibacterial and Anticancer Activities of Pleurocidin-Amide, a Potent Marine Antimicrobial Peptide Derived from Winter Flounder,
    Hsu HC; Chen MH; Yeh ML; Chen WJ
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005521
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L
    Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of free energy landscapes as a strategy for the design of antimicrobial peptides.
    Hassan SA; Steinbach PJ
    J Biol Phys; 2022 Jun; 48(2):151-166. PubMed ID: 35419659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria.
    Tram NDT; Selvarajan V; Boags A; Mukherjee D; Marzinek JK; Cheng B; Jiang ZC; Goh P; Koh JJ; Teo JWP; Bond PJ; Ee PLR
    Acta Biomater; 2021 Nov; 135():214-224. PubMed ID: 34506975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH
    Biondi B; Casciaro B; Di Grazia A; Cappiello F; Luca V; Crisma M; Mangoni ML
    Amino Acids; 2017 Jan; 49(1):139-150. PubMed ID: 27726008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.
    Kim EY; Rajasekaran G; Shin SY
    Eur J Med Chem; 2017 Aug; 136():428-441. PubMed ID: 28525841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional Acidocin 4356 Combats
    Modiri S; Kasra Kermanshahi R; Soudi MR; Arab SS; Khammari A; Cousineau B; Vali H; Zahiri HS; Noghabi KA
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32169940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides.
    Wang CK; Shih LY; Chang KY
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Bobde SS; Alsaab FM; Wang G; Van Hoek ML
    Front Microbiol; 2021; 12():715246. PubMed ID: 34867843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions.
    Bhattacharjya S
    Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus.
    Lin MC; Hui CF; Chen JY; Wu JL
    Peptides; 2013 Jun; 44():139-48. PubMed ID: 23598079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs.
    Agbale CM; Sarfo JK; Galyuon IK; Juliano SA; Silva GGO; Buccini DF; Cardoso MH; Torres MDT; Angeles-Boza AM; de la Fuente-Nunez C; Franco OL
    Biochemistry; 2019 Sep; 58(36):3802-3812. PubMed ID: 31448597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.