These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 36857664)
1. New types of complex motion of a simple camphor boat. Löffler RJG; Roliński T; Kitahata H; Koyano Y; Górecki J Phys Chem Chem Phys; 2023 Mar; 25(11):7794-7804. PubMed ID: 36857664 [TBL] [Abstract][Full Text] [Related]
2. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution. Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858 [TBL] [Abstract][Full Text] [Related]
3. The Impact of a Flexible Stern on Canoe Boat Maneuverability and Speed. Stadler AT; Schönauer M; Aslani R; Baumgartner W; Philippi T Biomimetics (Basel); 2020 Feb; 5(1):. PubMed ID: 32079145 [TBL] [Abstract][Full Text] [Related]
4. Period of Oscillatory Motion of a Camphor Boat Determined by the Dissolution and Diffusion of Camphor Molecules. Tenno R; Gunjima Y; Yoshii M; Kitahata H; Gorecki J; Suematsu NJ; Nakata S J Phys Chem B; 2018 Mar; 122(9):2610-2615. PubMed ID: 29405712 [TBL] [Abstract][Full Text] [Related]
5. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment. Nakata S; Yoshii M; Matsuda Y; Suematsu NJ Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135 [TBL] [Abstract][Full Text] [Related]
6. Quantitative estimation of the parameters for self-motion driven by difference in surface tension. Suematsu NJ; Sasaki T; Nakata S; Kitahata H Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964 [TBL] [Abstract][Full Text] [Related]
7. Characteristic self-motion of a camphor boat sensitive to ester vapor. Nakata S; Matsuo K Langmuir; 2005 Feb; 21(3):982-4. PubMed ID: 15667178 [TBL] [Abstract][Full Text] [Related]
8. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method. Nomoto T; Marumo M; Chiari L; Toyota T; Fujinami M J Phys Chem B; 2023 Mar; 127(12):2863-2871. PubMed ID: 36921258 [TBL] [Abstract][Full Text] [Related]
9. A Perfect Plastic Material for Studies on Self-Propelled Motion on the Water Surface. Löffler RJG; Hanczyc MM; Gorecki J Molecules; 2021 May; 26(11):. PubMed ID: 34071048 [TBL] [Abstract][Full Text] [Related]
10. Reduced model of a reaction-diffusion system for the collective motion of camphor boats. Ikeda K; Ei SI; Nagayama M; Okamoto M; Tomoeda A Phys Rev E; 2019 Jun; 99(6-1):062208. PubMed ID: 31330577 [TBL] [Abstract][Full Text] [Related]
12. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants. Nakata S; Murakami M Langmuir; 2010 Feb; 26(4):2414-7. PubMed ID: 19877701 [TBL] [Abstract][Full Text] [Related]
13. Complexity and bifurcations in the motion of a self-propelled rectangle confined in a circular water chamber. Kitahata H; Koyano Y; Löffler RJG; Górecki J Phys Chem Chem Phys; 2022 Aug; 24(34):20326-20335. PubMed ID: 35980173 [TBL] [Abstract][Full Text] [Related]
14. Bifurcation in the angular velocity of a circular disk propelled by symmetrically distributed camphor pills. Koyano Y; Kitahata H; Gryciuk M; Akulich N; Gorecka A; Malecki M; Gorecki J Chaos; 2019 Jan; 29(1):013125. PubMed ID: 30709118 [TBL] [Abstract][Full Text] [Related]
15. Towards optimizing rowing technique. Sanderson B; Martindale W Med Sci Sports Exerc; 1986 Aug; 18(4):454-68. PubMed ID: 3747808 [TBL] [Abstract][Full Text] [Related]
16. Synchronized sailing of two camphor boats in polygonal chambers. Nakata S; Doi Y; Kitahata H J Phys Chem B; 2005 Feb; 109(5):1798-802. PubMed ID: 16851161 [TBL] [Abstract][Full Text] [Related]
17. Power law observed in the motion of an asymmetric camphor boat under viscous conditions. Shimokawa M; Oho M; Tokuda K; Kitahata H Phys Rev E; 2018 Aug; 98(2-1):022606. PubMed ID: 30253558 [TBL] [Abstract][Full Text] [Related]
18. Three-axes gyro system quantifying the specific balance of rowing. Wagner J; Bartmus U; de Marées H Int J Sports Med; 1993 Sep; 14 Suppl 1():S35-8. PubMed ID: 8262706 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous motion of an elliptic camphor particle. Kitahata H; Iida K; Nagayama M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):010901. PubMed ID: 23410272 [TBL] [Abstract][Full Text] [Related]
20. Height-dependent oscillatory motion of a plastic cup with a camphor disk floated on water. Fujita R; Takayama N; Matsuo M; Iima M; Nakata S Phys Chem Chem Phys; 2023 May; 25(20):14546-14551. PubMed ID: 37191103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]